5 resultados para PERTURBED ANGULAR CORRELATIONS
em Universidade do Minho
Resumo:
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of s√=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb−1. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
Resumo:
The associated production of a Higgs boson and a top-quark pair, tt¯H, in proton-proton collisions is addressed in this paper for a center of mass energy of 13TeV at the LHC. Dileptonic final states of tt¯H events with two oppositely charged leptons and four jets from the decays t→bW+→bℓ+νℓ, t¯→b¯W−→b¯ℓ−ν¯ℓ and h→bb¯, are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of tt¯H signal events over the dominant irreducible background contribution, tt¯bb¯. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the tt¯H signal and the dominant background (tt¯bb¯).
Resumo:
The paper presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb−1, 190 μb−1 and 12.4 nb−1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Resumo:
High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb−1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs(mZ)=0.1173±0.0010 (exp.) +0.0065−0.0026 (theo.).
Resumo:
In this chapter, a complete characterization of the angular velocity and angular acceleration for rigid bodies in spatial multibody systems are presented. For both cases, local and global formulations are described taking into account the advantages of using Euler parameters. In this process, the transformation between global and local components of the angular velocity and time derivative of the Euler parameters are analyzed and discussed in this chapter.