9 resultados para Oviposition Cues

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3]. Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immersive environments (IE) are being increasingly used in order to perform psychophysical experiments. The versatility in terms of stimuli presentation and control and the less time-consuming procedures are their greatest strengths. However, to ensure that IE results can be generalized to real world scenarios we must first provide evidence that performance in IE is quantitatively indistinguishable from performance in real-world. Our goal was to perceptually validate distance perception for CAVE-like IEs. Participants performed a Frontal Matching Distance Task (Durgin & Li, 2011) in three different conditions: real-world scenario (RWS); photorealistic IE (IEPH) and non-photorealistic IE (IENPH). Underestimation of distance was found across all the conditions, with a significant difference between the three conditions (Wilks’ Lambda = .38, F(2,134)= 110.8, p<.01, significant pairwise differences with p<.01). We found a mean error of 2.3 meters for the RWS, 5 meters for the IEPH, and of 6 meters for the IENPH in a pooled data set of 5 participants. Results indicate that while having a photorealistic IE with perspective and stereoscopic depth cues might not be enough to elicit a real-world performance in distance judgment tasks, nevertheless this type of environment minimizes the discrepancy between simulation and real-world when compared with non-photorealistic IEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Abnormalities in emotional prosody processing have been consistently reported in schizophrenia and are related to poor social outcomes. However, the role of stimulus complexity in abnormal emotional prosody processing is still unclear. Method: We recorded event-related potentials in 16 patients with chronic schizophrenia and 16 healthy controls to investigate: 1) the temporal course of emotional prosody processing; and 2) the relative contribution of prosodic and semantic cues in emotional prosody processing. Stimuli were prosodic single words presented in two conditions: with intelligible (semantic content condition—SCC) and unintelligible semantic content (pure prosody condition—PPC). Results: Relative to healthy controls, schizophrenia patients showed reduced P50 for happy PPC words, and reduced N100 for both neutral and emotional SCC words and for neutral PPC stimuli. Also, increased P200 was observed in schizophrenia for happy prosody in SCC only. Behavioral results revealed higher error rates in schizophrenia for angry prosody in SCC and for happy prosody in PPC. Conclusions: Together, these data further demonstrate the interactions between abnormal sensory processes and higher-order processes in bringing about emotional prosody processing dysfunction in schizophrenia. They further suggest that impaired emotional prosody processing is dependent on stimulus complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.