30 resultados para Optimization procedures

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of historic masonry walls is an intricate and complex field and has been an object of research for many years. This paper aims to propose practical methodologies for the diagnosis of historic masonry walls, specifically based on their typological characteristics. In order to develop such procedures, information relating to historic masonry typologies in Portugal, classified as rural, urban and military was gathered and techniques for the assessment of historic masonry were studied. All information was integrated to develop a pattern typology oriented methodology. Developed methodology was tested and validated in a small diagnosis campaign carried out in the Guimarães Castle. Methodology was proven to be advantageous and although the study is limited and focused on the Portuguese architectural specificities, it still holds global classifications, and therefore can be useful for any diagnosis procedure of a historic masonry wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworks tasks are often regarded in transportation projects as some of the most demanding processes. In fact, sequential tasks such as excavation, transportation, spreading and compaction are strongly based on heavy mechanical equipment and repetitive processes, thus becoming as economically demanding as they are time-consuming. Moreover, actual construction requirements originate higher demands for productivity and safety in earthwork constructions. Given the percentual weight of costs and duration of earthworks in infrastructure construction, the optimal usage of every resource in these tasks is paramount. Considering the characteristics of an earthwork construction, it can be looked at as a production line based on resources (mechanical equipment) and dependency relations between sequential tasks, hence being susceptible to optimization. Up to the present, the steady development of Information Technology areas, such as databases, artificial intelligence and operations research, has resulted in the emergence of several technologies with potential application bearing that purpose in mind. Among these, modern optimization methods (also known as metaheuristics), such as evolutionary computation, have the potential to find high quality optimal solutions with a reasonable use of computational resources. In this context, this work describes an optimization algorithm for earthworks equipment allocation based on a modern optimization approach, which takes advantage of the concept that an earthwork construction can be regarded as a production line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highway construction, earthworks refer to the tasks of excavation, transportation, spreading and compaction of geomaterial (e.g. soil, rockfill and soil-rockfill mixture). Whereas relying heavily on machinery and repetitive processes, these tasks are highly susceptible to optimization. In this context Artificial Intelligent techniques, such as Data Mining and modern optimization can be applied for earthworks. A survey of these applications shows that they focus on the optimization of specific objectives and/or construction phases being possible to identify the capabilities and limitations of the analyzed techniques. Thus, according to the pinpointed drawbacks of these techniques, this paper describes a novel intelligent earthwork optimization system, capable of integrating DM, modern optimization and GIS technologies in order to optimize the earthwork processes throughout all phases of design and construction work. This integration system allows significant savings in time, cost and gas emissions contributing for a more sustainable construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.