2 resultados para OSCILLATORY CONTRACTIONS

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large amplitude oscillatory shear (LAOS) coupled with Fourier transform rheology (FTR) was used for the first time to characterize the large deformation behavior of selected bituminous binders at 20 C. Two polymer modified bitumens (PMB) containing recycled EVA and HDPE and two unmodified bitumens were tested with LAOS-FTR. The LAOS-FTR response of all binders was compared at same frequency, at same Deborah number (by tuning the frequency to the relaxation time of each binder) and at same phase shift angle d (by tuning the frequency to the one corresponding to d = 50 in the SAOS response of each sample). In all the approaches, LAOS-FTR results allowed to differentiate between all the nonlinear mechanical characteristics of the tested binders. All binders show LAOS-FTR patterns reminiscent from colloidal dispersions and emulsions. EVA PMB was less prone to strain-induced microstructural changes when compared to HDPE PMB which showed larger values of nonlinear FTR parameters for the range of shear strains tested in LAOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.