21 resultados para ORGANIC-COMPOUND EMISSIONS
em Universidade do Minho
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
In the past decade, the research community has been dedicating considerable effort into indoor positioning systems based on Wi-Fi fingerprinting techniques, mainly due to their capability to exploit existing infrastructures. Crowdsourcing approaches, also known as organic, have been proposed recently to address the problem of creating and maintaining the corresponding radio maps. In these organic systems, the users of the system build the radio map themselves while using it to estimate their own position/location. However, most of these collaborative methods, proposed by several authors, assume that all the users are honest and committed to contribute to a good quality radio map. In this paper we assess the quality of a radio map built collaboratively and propose a method to classify the credibility of individual contributions and the reputation of individual users. Experimental results are presented for an organic indoor location system that has been used by more than one hundred users over a period of around 12 months.
Resumo:
Recent research has proved the potential of alkaline activated fly-ash for soil stabilisation. However, such studies have not focused on the link between financial, mechanical and environmental aspects of this solution, but only on their absolute mechanical properties. The present paper characterises the mechanical behaviour of a large spectrum of activator-ash-soil combinations used to build jet mixing columns, analysing also the cost and CO2 (eq) emissions. The concern with these two vectors forced a decrease in the quantity of stabilising agent added to the soil, relatively to previous research, and the effects of such low quantities have not yet been published. However, the results clearly showed a significant improve in strength, still well above the average values expected when improving the stressstrain behaviour of a weak soil. Uniaxial compressive strength tests were used to assess the effects of the fly-ash percentage, the alkalieash ratio and the water content. The carbon calculator recently developed by the European Federation of Foundation Contractors and the Deep Foundations Institute was used to quantify the CO2 (eq) emissions associated with this technique. The financial cost was estimated based on the experience of a major Portuguese contractor. For comparison purposes, soil cement mixtures were also analysed, using similar conditions and tools used for the soil-ash analysis. Results showed that the cement and ash solutions are very similar in terms of overall performance, with some advantage of the former regarding financial cost, and a significant advantage of the latter regarding the CO2 (eq) emissions. This new grout, although it is in an embryonic stage, it has the potential for broader developments in the field.
Mechanism of extracellular silver nanoparticles synthesis by Stereum hirsutum and Fusarium oxysporum
Resumo:
The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Buildings are one of the major consumers of energy in Europe. This makes them an important target when aiming to reduce the energy consumptions and carbon emissions. The majority of the European building stock has already some decades and so it needs renovation in order to keep its functionality. Taking advantage of these interventions, the energy performance of the buildings may also be improved. In Portugal the renovation techniques, both regarding energy efficiency measures as well as measures for the use of renewable energy sources, are normally planned at the building scale. It is important to explore the possibility of having large scale interventions, has it has been done in other countries, namely at neighbourhood scale with district energy system in order to optimize the results in terms of costs and environmental impact.
Resumo:
The relevance of the building sector in the global energy use as well as in the global carbon emissions, both in the developed and developing countries, makes the improvement of the overall energy performance of existing buildings an important part of the actions to mitigate climate changes. Regardless of this potential for energy and emissions saving, large scale building renovation has been found hard to trigger, mainly because present standards are mainly focused on new buildings, not responding effectively to the numerous technical, functional and economic constraints of the existing ones. One of the common problems in the assessment of building renovation scenarios is that only energy savings and costs are normally considered, despite the fact that it has been long recognized that investment on energy efficiency and low carbon technologies yield several benefits beyond the value of saved energy which can be as important as the energy cost savings process. Based on the analysis of significant literature and several case studies, the relevance of co-benefits achieved in the renovation process is highlighted. These benefits can be felt at the building level by the owner or user (like increased user comfort, fewer problems with building physics, improved aesthetics) and should therefore be considered in the definition of the renovation measures, but also at the level of the society as a whole (like health effects, job creation, energy security, impact on climate change), and from this perspective, policy makers must be aware of the possible crossed impacts among different areas of the society for the development of public policies.
Resumo:
Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.
Resumo:
During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.
Resumo:
We provide a comparative analysis of how short-run variations in carbon and energy prices relate to each other in the emerging greenhouse gas market in California (Western Climate Initiative [WCI], and the European Union Emission Trading Scheme [EU ETS]). We characterize the relationship between carbon, gas, coal, electricity and gasoline prices and an indicator for economic activity, and present a first analysis of carbon prices in the WCI. We also provide a comparative analysis of the structures of the two markets. We estimate a vector autoregressive model and the impulse--response functions. Our main findings show a positive impact from a carbon shock toward electricity, in both markets, but larger in the WCI electricity price, indicating more efficiency. We propose that the widening of carbon market sectors, namely fuels transport and electricity imports, may contribute to this result. To conclude, the research shows significant and coherent relations between variables in WCI, which demonstrate some degree of success for a first year in operation. Reversely, the EU ETS should complete its intended market reform, to allow for more impact of the carbon price. Finally, in both markets, there is no evidence of carbon pricing depleting economic activity.
Organic-inorganic hybrid sol-gelcoatings for metal corrosion protection: a review of recent progress
Resumo:
This paper is a review of the most recent and relevant achievements (from 2001 to 2013) on the development of organic–inorganic hybrid (OIH) coatings produced by sol–gel-derivedmethods to improve resistance to oxidation/corrosion of different metallic substrates and their alloys. This review is focused on the research of OIH coatings based on siloxanes using the sol–gel process conducted at an academic level and aims to summarize the materials developed and identify perspectives for further research. The fundamentals of sol–gel are described, including OIH classification, the interaction with the substrate, their advantages, and limitations. The main precursors used in the synthesis ofOIHsol–gel coatings for corrosion protection are also discussed, according to the metallic substrate used. Finally, a multilayer system to improve the resistance to corrosion is proposed, based on OIH coatings produced by the sol–gel process, and the future research challenges are debated.
Resumo:
In Portugal the use of Constructed Wetlands (CW) for wastewater treatment has been increasing. However a number of these facilities need new strategies to achieve better efficiency. Keeping the culms of reeds on the CW beds not always results as desired, but the use of widely available agro-forest wastes, may be suitable as CW support matrix. This study was performed at lab-scale with dried culms of Phragmites and eucalyptus bark maintained in tap water, to assess them as CW substrata. With a 7 days residence time in water, Phragmites culms added a high organic load (about 400 mg L-1 BOD5) to the medium, while the eucalyptus bark added only, about 60 mg L-1 BOD5. However, by lixiviation, the organic load decreased to about 25 mg L-1 BOD5 in 5 weeks. With the organic load reduction of the leachate water, its surface tension increased, approaching the surface tension of tap water.
Resumo:
In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.