7 resultados para OPTIMIZATION PROCESS

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Excerpt] Bioethanol from lignocellulosic materials (LCM), also called second generation bioethanol, is considered a promising alternative to first generation bioethanol. An efficient production process of lignocellulosic bioethanol involves an effective pretreatment of LCM to improve the accessibility of cellulose and thus enhance the enzymatic saccharification. One interesting approach is to use the whole slurry from treatment, since allows economical and industrial benefits: washing steps are avoided, water consumption is lower and the sugars from liquid phase can be used, increasing ethanol concentration [1]. However, during the pretreatment step some compounds (such as furans, phenolic compounds and weak acids) are produced. These compounds have an inhibitory effect on the microorganisms used for hydrolysate fermentation [2]. To overcome this, the use of a robust industrial strain together with agro-industrial by-products as nutritional supplementation was proposed to increase the ethanol productivities and yields. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.