7 resultados para Noncommutative Invariant Theory
em Universidade do Minho
Resumo:
This Letter reports a measurement of the exclusive γγ→ℓ+ℓ−(ℓ=e,μ) cross-section in proton--proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of 4.6 fb−1. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be σexcl.γγ→e+e−=0.428±0.035(stat.)±0.018(syst.) pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum pT>12 GeV and pseudorapidity |η|<2.4. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum pT>10 GeV and pseudorapidity |η|<2.4, the cross-section is determined to be σexcl.γγ→μ+μ−=0.628±0.032(stat.)±0.021(syst.) pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.
Resumo:
The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯+1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton--proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−1. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet, is: mpolet =173.7 ± 1.5 (stat.) ± 1.4 (syst.) +1.0−0.5 (theory) GeV. This result represents the most precise measurement of the top-quark pole mass to date.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing Dm r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source implementation of the algorithm programmed in C++ is publicly available at http://www.pawelpilarczyk.com/combtop/.
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.
Resumo:
We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1–D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string \alpha' corrections: it is actually induced by them.