27 resultados para Neural Modeling Fields
em Universidade do Minho
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
The present paper investigates the risks that arise from exposure to noise from powerpoles and powerlines in Serzedelo, in the municipality of Guimarães, in Portugal. This research focused on four guiding questions: Can powerlines cause noise? Do powerlines cause discomfort? Do powerlines cause discomfort due to noise? And can powerlines effect human health? Two groups were the basis of the study: people that were exposed to electromagnetic waves and people that were not. the research pointed to the harmful influence of the presence of powerlines and high-voltage masts in residential areas and the damage to the cells in the human body. This type of environmental noise, which has the spectral content of a low frequency, typically tonal noise and a very high speed of propagation, is a complex source to explain in terms of the health profiles of the human population living in Serzedelo, located in an area that is densely occupied by high voltage powerlines and powerpole.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
PhD Thesis in Bioengineering
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.
Resumo:
The authors would like to thank the financial support from the NovoNordiskFoundation.
Resumo:
Although the impact of early adverse experience on neural processing of face familiarity has been studied, research has not taken into account disordered child behavior. This work compared the neural processing of familiar versus strangers' faces in 47 institutionalized children with a mean age of 54 months to determine the effects of (a) the presence versus absence of atypical social behavior and (b) inhibited versus indiscriminant atypical behavior. Results revealed a pattern of cortical hypoactivation in institutionalized children manifesting atypical social behavior and that inhibited children displayed larger neural response to a caregiver's face than to the stranger's, while indiscriminant children did not discriminate between stimuli. These findings suggest that neural correlates of face familiarity are associated with social functioning in institutionalized children.
Resumo:
The effect of varying separator membrane physical parameters such as degree of porosity, tortuosity and thickness, on battery delivered capacity was studied in order to optimize performance of lithium-ion batteries. This was achieved by a theoretical mathematical model relating the Bruggeman coefficient with the degree of porosity and tortuosity. The inclusion of the separator membrane in the simulation model of the battery system does not affect the delivered capacity of the battery. The ionic conductivity of the separator and consequently the delivered capacity values obtained at different discharge rates depends on the value of the Bruggeman coefficient, which is related with the degree of porosity and tortuosity of the membrane. Independently of scan rate, the optimal value of the degree of porosity is above 50% and the separator thickness should range between 1 μm at 32 μm for improved battery performance.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.