16 resultados para Negative dispersion mirrors
em Universidade do Minho
Resumo:
Triple negative breast cancer (TNBC) is a particular immunopathological subtype of breast cancer that lacks expression of estrogen and progesterone receptors (ER/PR) and amplification of the human epidermal growth factor receptor 2 (HER2) gene. Characterized by aggressive and metastatic phenotypes and high rates of relapse, TNBC is the only breast cancer subgroup still lacking effective therapeutic options, thus presenting the worst prognosis. The development of targeted therapies, as well as early diagnosis methods, is vital to ensure an adequate and timely therapeutic intervention in patients with TNBC. This review intends to discuss potentially emerging approaches for the diagnosis and treatment of TNBC patients, with a special focus on nano-based solutions that actively target these particular tumors.
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.
Resumo:
Artigo publicado a convite da Society for Polymer Engineers
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.
Resumo:
Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.
Resumo:
The present study investigated whether oculomotor behavior is influenced by attachment styles. The Relationship Scales Questionnaire was used to assess attachment styles of forty-eight voluntary university students and to classify them into attachment groups (secure, preoccupied, fearful, and dismissing). Eye-tracking was recorded while participants engaged in a 3-seconds free visual exploration of stimuli presenting either a positive or a negative picture together with a neutral picture, all depicting social interactions. The task consisted in identifying whether the two pictures depicted the same emotion. Results showed that the processing of negative pictures was impermeable to attachment style, while the processing of positive pictures was significantly influenced by individual differences in insecure attachment. The groups highly avoidant regarding to attachment (dismissing and fearful) showed reduced accuracy, suggesting a higher threshold for recognizing positive emotions compared to the secure group. The groups with higher attachment anxiety (preoccupied and fearful) showed differences in automatic capture of attention, in particular an increased delay preceding the first fixation to a picture of positive emotional valence. Despite lenient statistical thresholds induced by the limited sample size of some groups (p < 0.05 uncorrected for multiple comparisons), the current findings suggest that the processing of positive emotions is affected by attachment styles. These results are discussed within a broader evolutionary framework.
Resumo:
The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
The present study demonstrates the antibacterial potential of a phage endolysin against Gram-negative pathogens, particularly against multidrug resistant strains of Acinetobacter baumannii. We have cloned, heterologously expressed and characterized a novel endolysin (ABgp46) from Acinetobacter phage vb_AbaP_CEB1 and tested its antibacterial activity against several multidrug-resistant A. baumannii strains. LC-MS revealed that ABgp46 is an N-acetylmuramidase, that is also active over a broad pH range (4.0-10.0) and temperatures up to 50°C. Interestingly, ABgp46 has intrinsic and specific anti-A. baumannii activity, reducing multidrug resistant strains by up to 2 logs within 2 hours. By combining ABgp46 with several organic acids that act as outer membrane permeabilizing agents, it is possible to increase and broaden antibacterial activity to include other Gram-negative bacterial pathogens. In the presence of citric and malic acid, ABgp46 reduces A. baumannii below the detection limit (> 5 log) and more than 4 logs P. aeruginosa and Salmonella Typhimurium strains. Overall, this globular endolysin exhibits a broad and high activity against Gram-negative pathogens, that can be enhanced in presence of citric and malic acid, and be used in human and veterinary medicine.
Resumo:
Dissertação de mestrado em Bioengenharia