9 resultados para Navigation sensors

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positioning technologies are becoming ubiquitous and are being used more and more frequently for supporting a large variety of applica- tions. For outdoor applications, global navigation satellite systems (GNSSs), such as the global positioning system (GPS), are the most common and popular choice because of their wide coverage. GPS is also augmented with network-based systems that exploit existing wireless and mobile networks for providing positioning functions where GPS is not available or to save energy in battery-powered devices. Indoors, GNSSs are not a viable solution, but many applications require very accurate, fast, and exible positioning, tracking, and navigation functions. These and other requirements have stim- ulated research activities, in both industry and academia, where a variety of fundamental principles, techniques, and sensors are being integrated to provide positioning functions to many applications. The large majority of positioning technologies is for indoor environments, and most of the existing commercial products have been developed for use in of ce buildings, airports, shopping malls, factory plants, and similar spaces. There are, however, other spaces where positioning, tracking, and navigation systems play a central role in safety and in rescue operations, as well as in supporting speci c activities or for scienti c research activities in other elds. Among those spaces are underground tunnels, mines, and even underwater wells and caves. This chapter describes the research efforts over the past few years that have been put into the development of positioning systems for underground tun- nels, with particular emphasis in the case of the Large Hadron Collider (LHC) at CERN (the European Organization for Nuclear Research), where localiza- tion aims at enabling more automatic and unmanned radiation surveys. Examples of positioning and localization systems that have been devel- oped in the past few years for underground facilities are presented in the fol- lowing section, together with a brief characterization of those spaces’ special conditions and the requirements of some of the most common applications. Section 5.2 provides a short overview of some of the most representative research efforts that are currently being carried out by many research teams around the world. In addition, some of the fundamental principles and tech- niques are identi ed, such as the use of leaky coaxial cables, as used at the LHC. In Section 5.3, we introduce the speci c environment of the LHC and de ne the positioning requirements for the envisaged application. This is followed by a detailed description of our approach and the results that have been achieved so far. Some last comments and remarks are presented in a nal section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)