17 resultados para Mycobacterium avium Complex
em Universidade do Minho
Resumo:
Wild boar (Sus scrofa) and red deer (Cervus elaphus) are the main maintenance hosts for bovine tuberculosis (bTB) in continental Europe. Understanding Mycobacterium tuberculosis complex (MTC) excretion routes is crucial to define strategies to control bTB in free-ranging populations, nevertheless available information is scarce. Aiming at filling this gap, four different MTC excretion routes (oronasal, bronchial-alveolar, fecal and urinary) were investigated by molecular methods in naturally infected hunter-harvested wild boar and red deer. In addition MTC concentrations were estimated by the Most Probable Number method. MTC DNA was amplified in all types of excretion routes. MTC DNA was amplified in at least one excretion route from 83.0% (CI95 70.8-90.8) of wild ungulates with bTB-like lesions. Oronasal or bronchial-alveolar shedding were detected with higher frequency than fecal shedding (p < 0.001). The majority of shedders yielded MTC concentrations <10(3) CFU/g or mL. However, from those ungulates from which oronasal, bronchial-alveolar and fecal samples were available, 28.2% of wild boar (CI95 16.6-43.8) and 35.7% of red deer (CI95 16.3-61.2) yielded MTC concentrations >10(3) CFU/g or mL (referred here as super-shedders). Red deer have a significantly higher risk of being super-shedders compared to wild boar (OR = 11.8, CI95 2.3-60.2). The existence of super-shedders among the naturally infected population of wild boar and red deer is thus reported here for the first time and MTC DNA concentrations greater than the minimum infective doses were estimated in excretion samples from both species.
Resumo:
Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area.
Resumo:
Accepted Manuscript
Resumo:
BACKGROUND: The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. RESULTS: Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98 %) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit - Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7 %) cases, was the main cause of TBLN and 66.7 % of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n?=?19; 43.2 %). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. CONCLUSIONS: M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.
Resumo:
Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.
Resumo:
It is a difficult task to avoid the “smart systems” topic when discussing smart prevention and, similarly, it is a difficult task to address smart systems without focusing their ability to learn. Following the same line of thought, in the current reality, it seems a Herculean task (or an irreparable omission) to approach the topic of certified occupational health and safety management systems (OHSMS) without discussing the integrated management systems (IMSs). The available data suggest that seldom are the OHSMS operating as the single management system (MS) in a company so, any statement concerning OHSMS should mainly be interpreted from an integrated perspective. A major distinction between generic systems can be drawn between those that learn, i.e., those systems that have “memory” and those that have not. These former systems are often depicted as adaptive since they take into account past events to deal with novel, similar and future events modifying their structure to enable success in its environment. Often, these systems, present a nonlinear behavior and a huge uncertainty related to the forecasting of some events. This paper seeks to portray, for the first time as we were able to find out, the IMSs as complex adaptive systems (CASs) by listing their properties and dissecting the features that enable them to evolve and self-organize in order to, holistically, fulfil the requirements from different stakeholders and thus thrive by assuring the successful sustainability of a company. Based on the revision of literature carried out, this is the first time that IMSs are pointed out as CASs which may develop fruitful synergies both for the MSs and for CASs communities. By performing a thorough revision of literature and based on some concepts embedded in the “DNA” of the subsystems implementation standards it is intended, specifically, to identify, determine and discuss the properties of a generic IMS that should be considered to classify it as a CAS.
Resumo:
In the present work the benefits of using graphics processing units (GPU) to aid the design of complex geometry profile extrusion dies, are studied. For that purpose, a3Dfinite volume based code that employs unstructured meshes to solve and couple the continuity, momentum and energy conservation equations governing the fluid flow, together with aconstitutive equation, was used. To evaluate the possibility of reducing the calculation time spent on the numerical calculations, the numerical code was parallelized in the GPU, using asimple programing approach without complex memory manipulations. For verificationpurposes, simulations were performed for three benchmark problems: Poiseuille flow, lid-driven cavity flow and flow around acylinder. Subsequently, the code was used on the design of two real life extrusion dies for the production of a medical catheter and a wood plastic composite decking profile. To evaluate the benefits, the results obtained with the GPU parallelized code were compared, in terms of speedup, with a serial implementation of the same code, that traditionally runs on the central processing unit (CPU). The results obtained show that, even with the simple parallelization approach employed, it was possible to obtain a significant reduction of the computation times.
Resumo:
Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.
Resumo:
[Extrat] Thermoplastic profiles are very attractive due to their inherent design freedom. However, the usual methodologies employed to design extrusion forming tools, based on experimental based trial–and–error procedures, are highly dependent on the designer’s experience and lead to high resources consumption. Despite of the relatively low cost of the raw materials employed on the production of this type of profiles, the resources involved in the die design process significantly increase their cost. These difficulties are even more evident when a complex geometry profile has to be produced and there is no previous experience with similar geometries. Therefore, novel design approaches are required, in order to reduce the required resources and guarantee a good performance for the produced profile. (...)
Resumo:
Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-?, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.
Resumo:
The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.
Resumo:
Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacterium cyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes.
Resumo:
Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies.
Resumo:
The aim of this study was to characterize sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its higher phenolic compounds (phenolic acids and flavonoids) concentration. The fruits extract was the only one showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) (GI50~74 μg/mL). This could be related with anthocyanins that were only found in fruits and not in stems. None of the preparations have shown hepatotoxicity against normal primary cells. Overall, this study reports innovative results regarding chemical and bioactive properties of sweet cherry stems, and confirmed the nutritional and antioxidant characteristics of their fruits.
Resumo:
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.