51 resultados para Mood-cue-approach
em Universidade do Minho
Resumo:
The emerging field of lipidomics has identified lipids as key players in disease physiology. Their physicochemical diversity allows precise control of cell structure and signaling events through modulation of membrane prop- erties and trafficking of proteins. As such, lipids are important regulators of brain function and have been implicated in neurodegenerative and mood disorders. Importantly, environmental chronic stress has been associated with anxiety and depression and its exposure in rodents has been extensively used as a model to study these diseases. With the accessibility to modern mass- spectrometry lipidomic platforms, it is now possible to snapshot the extensively interconnected lipid network. Here, we review the fundamentals of lipid biology and outline a framework for the interpretation of lipidomic studies as a new approach to study brain pathophysiology. Thus, lipid profiling provides an exciting avenue for the identification of disease signatures with important implications for diagnosis and treatment of mood disorders.
Tendon regeneration through a scaffold-free approach: development of tenogenic magnetic hASCs sheets
Resumo:
Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.
Resumo:
As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.
Resumo:
Nowadays, road accidents are a major public health problem, which increase is forecasted if road safety is not treated properly, dying about 1.2 million people every year around the globe. In 2012, Portugal recorded 573 fatalities in road accidents, on site, revealing the largest decreasing of the European Union for 2011, along with Denmark. Beyond the impact caused by fatalities, it was calculated that the economic and social costs of road accidents weighted about 1.17% of the Portuguese gross domestic product in 2010. Visual Analytics allows the combination of data analysis techniques with interactive visualizations, which facilitates the process of knowledge discovery in sets of large and complex data, while the Geovisual Analytics facilitates the exploration of space-time data through maps with different variables and parameters that are under analysis. In Portugal, the identification of road accident accumulation zones, in this work named black spots, has been restricted to annual fixed windows. In this work, it is presented a dynamic approach based on Visual Analytics techniques that is able to identify the displacement of black spots on sliding windows of 12 months. Moreover, with the use of different parameterizations in the formula usually used to detect black spots, it is possible to identify zones that are almost becoming black spots. Through the proposed visualizations, the study and identification of countermeasures to this social and economic problem can gain new grounds and thus the decision- making process is supported and improved.
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.
Resumo:
The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
Ramos, D., Arezes, P. M., & Afonso, P. (2015). A systematic approach for externalities in occupational safety through the use of the delphi methodology. Paper presented at the Occupational Safety and Hygiene III - Selected Extended and Revised Contributions from the International Symposium on Safety and Hygiene.
Resumo:
Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation.
Resumo:
Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.
Resumo:
When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.