2 resultados para Molecular mass

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irgazyme, a commercial xylanase preparation from Trichoderma longibrachiatum, and xylanase D a purified enzyme from Trichoderma harzianum E58 were tested for their ability to enhance peroxide bleaching of Douglas-fir (Pseudotsuga menziesii) kraft pulp. A treatment with Irgazyme caused a much larger increase in brightness than did xylanase D. A double xylanase treatment with Irgazyme, before and after peroxide bleaching, resulted in the highest final brightness. Alkaline extraction increased the brightness of Douglas-fir brownstock. Treatment with Irgazyme released more lignin and carbohydrates than did xylanase D. The molecular mass of the lignin extracted from Irgazyme-treated brownstock was much larger than that from the control pulp. The lignin-like macromolecules directly solubilized from peroxide bleached pulps were substantially larger than those solubilized from the brownstock, irrespective of whether they were produced during xylanase or control treatments. This indicates that different kinds of materials were solubilized when a xylanase treatment was applied at different points in the bleaching sequence and raises concerns about the role of lignin entrapment in the mechanism by which xylanase enhances peroxide bleaching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fusarium verticillioides is considered one of the most important global sources of fumonisin contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol)