6 resultados para Model Identification

em Universidade do Minho


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. OBJECTIVE: The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. METHODS: The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies’ safety conditions were also analyzed. RESULTS: Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies’ safety conditions; the organizational scale is the one that best reflects the actual safety conditions. CONCLUSIONS: The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups’ safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Industrial and Systems Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a mathematical model for the production of Fructo-oligosaccharides (FOS) by Aureobasidium pullulans is developed. This model contains a relatively large set of unknown parameters, and the identification problem is analyzed using simulation data, as well as experimental data. Batch experiments were not sufficiently informative to uniquely estimate all the unknown parameters, thus, additional experiments have to be achieved in fed-batch mode to supplement the missing information. © 2015 IEEE.