20 resultados para Memory -- Testing
em Universidade do Minho
Resumo:
Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive. We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3 1. L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2. A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3. Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)
Resumo:
COST TU 1404
Resumo:
COST Action TU 1404
Resumo:
COST TU 1404
Resumo:
In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.
Resumo:
This work intends to present a newly developed test setup for dynamic out-of-plane loading using underWater Blast Wave Generators (WBWG) as loading source. Underwater blasting operations have been, during the last decades, subject of research and development of maritime blasting operations (including torpedo studies), aquarium tests for the measurement of blasting energy of industrial explosives and confined underwater blast wave generators. WBWG allow a wide range for the produced blast impulse and surface area distribution. It also avoids the generation of high velocity fragments and reduces atmospheric sound wave. A first objective of this work is to study the behavior of masonry infill walls subjected to blast loading. Three different masonry walls are to be studied, namely unreinforced masonry infill walls and two different reinforcement solutions. These solutions have been studied previously for seismic action mitigation. Subsequently, the walls will be simulated using an explicit finite element code for validation and parametric studies. Finally, a tool to help designers to make informed decisions on the use of infills under blast loading will be presented.
Connecting free volume with shape memory properties in noncytotoxic gamma-irradiated polycyclooctene
Resumo:
The free volume holes of a shape memory polymer have been analysed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyse shape recovery and free volume hole sizes in gamma irradiated polycyclooctene (PCO) samples, as a non-cytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open t possibilities for the design and control of the macroscopic response.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
PTX3-based genetic testing for risk of aspergillosis after lung transplant
Resumo:
It has been already shown that delivering tDCS that are spaced by an interval alters its impact on motor plasticity. These effects can be explained, based on metaplasticity in which a previous modification of activity in a neuronal network can change the effects of subsequent interventions in the same network. But to date there is limited data assessing metaplasticity effects in cognitive functioning.
Resumo:
This study used event-related potentials to examine interactions between mood, sentence context, and semantic memory structure in schizophrenia. Seventeen male chronic schizophrenia and 15 healthy control subjects read sentence pairs after positive, negative, or neutral mood induction. Sentences ended with expected words (EW), within-category violations (WCV), or between-category violations (BCV). Across all moods, patients showed sensitivity to context indexed by reduced N400 to EW relative to both WCV and BCV. However, they did not show sensitivity to the semantic memory structure. N400 abnormalities were particularly enhanced under a negative mood in schizophrenia. These findings suggest abnormal interactions between mood, context processing, and connections within semantic memory in schizophrenia, and a specific role of negative mood in modulating semantic processes in this disease.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.