11 resultados para Mechanical practices for the conservation of soil

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] We read with interest the case report by Ismael et al1 describing a patient with Sjo¨gren’s syndrome and cystic lung disease who could not be weaned from a ventilator due to severe central excessive dynamic airway collapse (EDAC) of the lower part of the trachea and proximal bronchi. EDAC corresponds to the expiratory bulging of the tracheobronchial wall without known airway structural abnormalities, leading to a decrease of at least 50% in internal diameter.2 It is a rare and underdiagnosed entity, commonly confused with other respiratory diseases such as asthma and COPD. Although noninvasive procedures such as cervicothoracic computed tomography scan on inspiration and expiration may suggest the disorder, the accepted standard method for diagnosis is bronchoscopy.3-7 (...).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has proved the potential of alkaline activated fly-ash for soil stabilisation. However, such studies have not focused on the link between financial, mechanical and environmental aspects of this solution, but only on their absolute mechanical properties. The present paper characterises the mechanical behaviour of a large spectrum of activator-ash-soil combinations used to build jet mixing columns, analysing also the cost and CO2 (eq) emissions. The concern with these two vectors forced a decrease in the quantity of stabilising agent added to the soil, relatively to previous research, and the effects of such low quantities have not yet been published. However, the results clearly showed a significant improve in strength, still well above the average values expected when improving the stressstrain behaviour of a weak soil. Uniaxial compressive strength tests were used to assess the effects of the fly-ash percentage, the alkalieash ratio and the water content. The carbon calculator recently developed by the European Federation of Foundation Contractors and the Deep Foundations Institute was used to quantify the CO2 (eq) emissions associated with this technique. The financial cost was estimated based on the experience of a major Portuguese contractor. For comparison purposes, soil cement mixtures were also analysed, using similar conditions and tools used for the soil-ash analysis. Results showed that the cement and ash solutions are very similar in terms of overall performance, with some advantage of the former regarding financial cost, and a significant advantage of the latter regarding the CO2 (eq) emissions. This new grout, although it is in an embryonic stage, it has the potential for broader developments in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The force distribution inside a dovetail joint is complex. Wood is simultaneously loaded in different directions in the several connected surfaces. The analytical solutions available for the analysis of the behavior of those carpentry joints rely on the mechanical properties of wood. In particular, the stiffness properties of wood under compression are crucial for the forces equilibrium. Simulations showed that the stiffness values considered in each of the springs normally assumed in the analytical models, have great influence in the bearing capacity and stiffness of the dovetail joints, with important consequence on the stress distribution over the overall structure. In a wide experimental campaign, the properties under compression of the most common wood species of existing timber structures have been determined. Then, a solved example of a dovetail joint is presented assuming different wood species and the corresponding strength and stiffness properties values obtained in the tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the first attempt of characterizing various physical, mechanical and chemical properties of Quiscal fibres, used by the native communities in Chile and investigating the influence of atmospheric dielectric barrier discharge plasma treatment on various properties such as diameter and linear density, fat, wax and impurity%, moisture regain, chemical elements and groups, thermal degradation, surface morphology, etc. According to the experimental observations, Quiscal fibre has lower tenacity than most of the technical grade natural fibres such as sisal, hemp, flax, etc., and plasma treatment at optimum dose improved its tenacity to the level of sisal fibres. Plasma treatment also reduced the amount of fat, wax and other foreign impurities present in Quiscal fibres as well as removed lignin and hemicellulose partially from the fibre structure. Plasma treatment led to functionalization of Quiscal fibre surface with chemical groups, as revealed from attenuated total reflection spectroscopy and also confirmed from the elemental analysis using energy dispersive Xray technique and pH and conductivity measurements of fibre aqueous extract. The wetting behavior of Quiscal fibre also improved considerably through plasma treatment. However, untreated and plasma treated Quiscal fibres showed similar thermal degradation behavior, except the final degradation stage, in which plasma treated fibres showed higher stability and incomplete degradation unlike the untreated fibres. The experimental results suggested that the plasma treated Quiscal fibres, like other technical grade natural fibres, can find potential application as reinforcement of composite materials for various industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the first attempt of characterizing several physical, mechanical and chemical properties of Quiscal fibres, usually used by the native communities in Chile and on investigations concerning the influence of atmospheric dielectric barrier discharge (DBD) plasma treatment on various properties such as diameter and linear density, percent of impurity, moisture regain, chemical elements and groups, thermal degradation, surface morphology, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.