6 resultados para Marine Natural-products

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia