3 resultados para Malignant Skin Melanoma

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell/cell-extracellular matrix (ECM) dynamic interactions appear to have a major role in regulating communication through soluble signaling, directing cell binding and activating substrates that participate in the highly organized wound healing process. Moreover, these interactions are also crucial for in vitro mimicking cutaneous physiology. Herein we explore cell sheet (CS) engineering to create cellular constructs formed by keratinocytes (hKC), fibroblasts (hDFB) and dermal microvascular endothelial cells (hDMEC), to target skin wound healing but also the in vitro recreation of relevant models. Taking advantage of temperature-responsive culture surfaces, which allow harvesting cultured cells as intact sheets along with the deposited native ECM, varied combinations of homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed. Constructs combining one CS of keratinocytes as an epidermis-like layer plus a vascularized dermis composed by hDFB and hDMECs were assembled as skin analogues for advancing in vitro testing. Simultaneously both hKC and hDMEC were shown to significantly contribute to the re-epithelialization of full-thickness mice skin wounds by promoting an early epithelial coverage, while hDMEC significantly lead to increased vessels density, incorporating the neovasculature. Thus, although determined by the cellular nature of the constructs, these outcomes demonstrated that CS engineering appear as an unique technology that open the possibility to create numerous combinations of 3D constructs to target defective wound healing as well as the construction of in vitro models to further mimic cutaneous functions crucial for drug screening and cosmetic testing assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on monocarboxylate transporters expression in prostate cancer (PCa) have shown that monocarboxylate transporter 2 (MCT2) was clearly overexpressed in prostate malignant glands, pointing it out as a putative biomarker for PCa. However, its localization and possible role in PCa cells remained unclear. In this study, we demonstrate that MCT2 localizes mainly at peroxisomes in PCa cells and is able to take advantage of the peroxisomal transport machinery by interacting with Pex19. We have also shown an increase in MCT2 expression from non-malignant to malignant cells that was directly correlated with its peroxisomal localization. Upon analysis of the expression of several peroxisomal ß-oxidation proteins in PIN lesions and PCa cells from a large variety of human prostate samples, we suggest that MCT2 presence at peroxisomes is related to an increase in ß -oxidation levels which may be crucial for malignant transformation. Our results present novel evidence that may not only contribute to the study of PCa development mechanisms but also pinpoint novel targets for cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Estatística