9 resultados para Macromolecular crowding
em Universidade do Minho
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
Polyurethane thermoplastic elastomer (TPU) nanocomposites were prepared by the incorporation of 1 wt% of high-structured carbon black (HSCB), carbon nanofibers (CNF), nanosilica (NS) and nanoclays (NC), following a proper high-shear blending procedure. The TPU nanofilled mechanical properties and morphology was assessed. The nanofillers interact mainly with the TPU hard segments (HS) domains, determining their glass transition temperature, and increasing their melting temperature and enthalpy. A significant improvement upon the modulus, sustained stress levels and deformation capabilities is evidenced. The relationships between the morphology and the nanofilled TPU properties are established, evidencing the role of HS domains on the mechanical response, regardless the nanofiller type.
Resumo:
For years, silk fibroin of a domestic silkworm, Bombyx mori, has been recognized as a valuable material and extensively used. In the last decades, new application fields are emerging for this versatile material. Those final, specific applications of silk dictate the way it has been processed in industry and research. This review focuses on the description of various approaches for silk downstream processing in a laboratory scale, that fall within several categories. The detailed description of workflow possibilities from the naturally found material to a finally formulated product is presented. Considerable attention is given to (bio-) chemical approaches of silk fibroin transformation, particularly, to its enzyme-driven modifications. The focus of the current literature survey is exclusively on the methods applied in research and not industry.
Resumo:
Expanding access to preschool education is a particularly important policy issue in developing countries, where enrollment rates are generally much lower, and where private institutions constitute a much larger share of the formal preschool sector, than in developed countries. This paper examines if an expansion in the supply of public preschool crowds-out private enrollment using rich data for municipalities in Brazil from 2000 to 2006, where federal transfers to local governments change discontinuously with given population thresholds. Results from a regression-discontinuity design reveal that larger federal transfers lead to a significant expansion of local public preschool services, but show no evidence of crowding-out of private enrollment, nor of negative impacts on the quality of private providers. This finding is consistent with a theory in which households differ in willingness-to-pay for preschool services, and private suppliers optimally adjust prices in response to an expansion of lower-quality, free-of-charge public supply. In the context of the model, the absence of crowding-out effects of more public preschool providers can be rationalized by the existence of relatively large differences in willingness-to-pay for preschool services across different demand segments. Our theoretical and empirical findings therefore suggest that in developing country settings characterized by relatively high income inequality, an expansion in public preschool supply will likely significantly increase enrollment among the poorest segments of society, and need not have adverse effects on the quantity or quality of local private supply.
Resumo:
Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.
Resumo:
Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers.
Resumo:
Designing novel multifunctional materials from natural resources is a challenging goal that has increasingly attracted researchers. Recently, the great potential of silk fibers has been recognized. The target readers for this review are researchers from different backgrounds (i.e., non-specialists in silk research) with special interests on the physical–chemical characterization of silk fibers, since their knowledge is crucial for the improvement of existent silk-based biomaterials and the basis for the development of new products. Examples of usual applications of Bombyx mori silk fibers are given and some of the most recent and exciting progress in new technological fields, is presented.
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
The preclinical development of nanomedicines raises several challenges and requires a comprehensive characterization. Among them is the evaluation of the biodistribution following systemic administration. In previous work, the biocompatibility and in vitro targeting ability of a glycol chitosan (GC) based nanogel have been validated. In the present study, its biodistribution in the mice is assessed, using near-infrared (NIR) fluorescence imaging as a tool to track the nanogel over time, after intravenous administration. Rapid whole body biodistribution of both Cy5.5 labeled GC nanogel and free polymer is found at early times. It remains widespreadly distributed in the body at least up to 6 h postinjection and its concentration then decreases drastically after 24 h. Nanogel blood circulation half-life lies around 2 h with the free linear GC polymer presenting lower blood clearance rate. After 24 h, the blood NIR fluorescence intensity associated with both samples decreases to insignificant values. NIR imaging of the organs shows that the nanogel had a body clearance time of 48 h, because at this time point a weak signal of NIR fluorescence is observed only in the kidneys. Hereupon it can be concluded that the engineered GC nanogel has a fairly long blood circulation time, suitable for biomedical applications, namely, drug delivery, simultaneously allowing efficient and quick body clearance.