10 resultados para METAL-INDUCED RECONSTRUCTION
em Universidade do Minho
Resumo:
The present work aims to contribute for the elucidation of the role of oxidative stress in the toxicity associated with the exposure of Pichia kudriavzevii to multi-metals (Cd, Pb and Zn). Cells of the non-conventional yeast P. kudriavzevii exposed for 6 h to the action of multi-metals accumulated intracellular reactive oxygen species (ROS), evaluated through the oxidation of the probe 2,7-dichlorodihydrofluorescein diacetate. A progressive loss of membrane integrity (monitored using propidium iodide) was observed in multi-metal-treated cells. The triggering of intracellular ROS accumulation preceded the loss of membrane integrity. These results suggest that the disruption of membrane integrity can be attributed to the oxidative stress. The exposure of yeast cells to single metal showed that, under the concentrations tested, Pb was the metal responsible for the induction of the oxidative stress. Yeast cells coexposed to an antioxidant (ascorbic acid) and multi-metals did not accumulate intracellular ROS, but loss proliferation capacity. Together, the data obtained indicated that intracellular ROS accumulation contributed to metal toxicity, namely for the disruption of membrane integrity of the yeast P. kudriavzevii. It was proposed that Pb toxicity (the metal responsible for the toxic symptoms under the conditions tested) result from the combination of an ionic mechanism and the intracellular ROS accumulation.
Resumo:
The number of houses damaged or destroyed after disasters is frequently large, and re-housing of homeless people is one of the most important tasks of reconstruction programmes. Reconstruction works often last long and during that time, it is essential to provide victims with the minimum conditions to live with dignity, privacy, and protection. This research intends to demonstrate the crucial role of temporary accommodation buildings to provide spaces where people can live and gradually resume their life until they have a permanent house. The study also aims to identify the main problems of temporary accommodation strategies and to discuss some principles and guidelines in order to reach better design solutions. It is found that temporary accommodation is an issue that goes beyond the simple provision of buildings, since the whole space for temporary settlement is important. Likewise, temporary accommodation is a process that should start before a disaster occurs, as a preventive pre-planning. In spite of being temporary constructions, these housing buildings are one of the most important elements to provide in emergency scenarios, contributing for better recovery and reconstruction actions.
Resumo:
Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.
Resumo:
BACKGROUND: Machinery safety issues are a challenge facing manufacturers who are supposed to create and provide products in a better and faster way. In spite of their construction and technological advance, they still contribute to many potential hazards for operators and those nearby. OBJECTIVE: The aim of this study is to investigate safety aspects of metal machinery offered for sale on Internet market according to compliance with minimum and fundamental requirements. METHODS: The study was carried out with the application of a checklist prepared on the basis of Directive 2006/42/EC and Directive 2009/104/EC and regulations enforcing them into Polish law. RESULTS: On the basis of the study it was possible to reveal the safety aspects that were not met in practice. It appeared that in the case of minimum requirements the most relevant problems concerned information, signal and control elements, technology and machinery operations, whereas as far as fundamental aspects are concerned it was hard to assure safe work process. CONCLUSIONS: In spite of the fact that more and more legal acts binding in the Member Countries of the European Union are being introduced to alleviate the phenomenon, these regulations are often not fulfilled.
Resumo:
An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.
Resumo:
PhD Thesis in Bioengineering
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good's buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal-buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
Films of BaFe12O19/P(VDF-TrFE) composites with 5, 10 and 20 %wt Barium ferrite content have been fabricated. BaFe12O19 microparticles have the shape of thin hexagonal platelets, the easy direction of magnetization remaining along the c axis, which is perpendicular to the plates. This fact allows for ferrite particles orientation in-plane and out-of-plane within the composite films, as confirmed by measured hysteresis loops. While the in-plane induced magnetoelectric effect (ME) is practically zero, these composite films show a good out-of-plane magnetoelectric effect. with maximum ME coupling coefficient changes of 3, 17 and 2 mV/cm.Oe for the 5, 10 and 20%wt Barium ferrite content films, respectively. We infer that this ME behavior appears as driven by the magnetization process arising when we applied the external magnetic field. We have also measured linear and reversible magnetoelectric effect for low applied bias field, when magnetization process is still reversible.
Resumo:
We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction $U$ may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.