6 resultados para Locally Linear Embedding
em Universidade do Minho
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
We investigate the low-energy electronic transport across grain boundaries in graphene ribbons and infinite flakes. Using the recursive Green’s function method, we calculate the electronic transmission across different types of grain boundaries in graphene ribbons. We show results for the charge density distribution and the current flow along the ribbon. We study linear defects at various angles with the ribbon direction, as well as overlaps of two monolayer ribbon domains forming a bilayer region. For a class of extended defect lines with periodicity 3, an analytic approach is developed to study transport in infinite flakes. This class of extended grain boundaries is particularly interesting, since the K and K0 Dirac points are superposed.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
Resumo:
This paper proposes and validates a model-driven software engineering technique for spreadsheets. The technique that we envision builds on the embedding of spreadsheet models under a widely used spreadsheet system. This means that we enable the creation and evolution of spreadsheet models under a spreadsheet system. More precisely, we embed ClassSheets, a visual language with a syntax similar to the one offered by common spreadsheets, that was created with the aim of specifying spreadsheets. Our embedding allows models and their conforming instances to be developed under the same environment. In practice, this convenient environment enhances evolution steps at the model level while the corresponding instance is automatically co-evolved.Finally,wehave designed and conducted an empirical study with human users in order to assess our technique in production environments. The results of this study are promising and suggest that productivity gains are realizable under our model-driven spreadsheet development setting.