50 resultados para Liquid Crystalline Polymer

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF-TrFE) has been investigated. 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], 1-ethyl-3-methylimidazolium triflate, [C2mim][(CF3SO3)3], 1-ethyl-3-methylimidazolium lactate, [C2mim][Lactate], 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SNC] and 1-ethyl-3-methylimidazolium hydrogen sulphate [C2mim][HSO4] have been used in SPE prepared by thermally induced phase separation (TIPS). The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC] > [CF3SO3)3] > [HSO4] > [Lactate] > [OAc], which is mainly dependent on the viscosity of the ionic liquid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene fluoride), PVDF, has been blended with different ionic liquids (IL) in order to evaluate the effect of the different IL anions and cations on the electroative -phase, thermal, mechanical and electrical properties of the polymer blend. [C2MIM][Cl], [C6MIM][Cl], [C10MIM][Cl], [C2MIM][NTf2], [C6MIM][NTf2], [C10MIM][NTf2] have been selected and were introduced in the polymer at a weight percentage of 40 wt%. It was found that the incorporation of ILs into the PVDF matrix leads to an increase of the -phase content due to the strong electrostatic interactions between the dipolar moments of PVDF and the ILs. Further, the incorporation of ILs into PVDF strongly decreases the elastic modulus and increases the electrical conductivity of the blend with respect to the pure polymer matrix, all these effects being accompanied by a modification of the crystallization kinetics, as indicated by the modified spherulitic microstructure. Thus, novel PVDF/IL blends films with high transparency, excellent antistatic properties, and highly polar crystal form fraction were successfully achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene fluoride), PVDF, films and membranes were prepared by solvent casting from dimethylformamide, DMF, by systematically varying polymer/solvent ratio and solvent evaporation temperature. The effect of the processing conditions on the morphology, degree of porosity, mechanical and thermal properties and crystalline phase of the polymer were evaluated. The obtained microstructure is explained by the Flory-Huggins theory. For the binary system, the porous membrane formation is attributed to a spinodal decomposition of the liquid-liquid phase separation. The morphological features were simulated through the correlation between the Gibbs total free energy and the Flory-Huggins theory. This correlation allowed the calculation of the PVDF/DMF phase diagram and the evolution of the microstructure in different regions of the phase diagram. Varying preparation conditions allow tailoring polymer 2 microstructure while maintaining a high degree of crystallinity and a large β crystalline phase content. Further, the membranes show adequate mechanical properties for applications in filtration or battery separator membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest and they are alternatives to synthetic polymers based on the decreasing oil resources. The polymer electrolytes were doped with choline-based IL N,N,Ntrimethyl- N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([N1 1 1 2(OH)][NTf2]), or Er (CF3SO3)3 or both. The polymer electrolytes were employed in the production of glass/ITO/WO3/electrolyte/ CeO2–TiO2/ITO/glass electrochromic devices (ECDs). The lowest onset temperature for the degradation of all the SPEs is at ~130 °C for the Gellan Er (CF3SO3)3 (10:1) this temperature range of stability is wide enough for a material to be applied as an electrolyte/separator component in electrochemical devices. The three ECDs displayed fast switching speed (ca. 15 s). Gellan [N1 1 1 2(OH)][NTf2] Er (CF3SO3)3 (5:1:10) exhibited an electrochromic contrast of 4.2% in the visible region, the coloration efficiency attained at 555 nm was 3.5 and 0.90 cm-2 C-1 in the “colored” and “bleached” states, respectively, and the open circuit memorywas 48 h. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating WO3 as cathodic electrochromic layer, are extremely encouraging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive.  We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3   1.  L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2.  A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3.  Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer binder modification with inorganic nanomaterials (NM) could be a potential and efficient solution to control matrix flammability of polymer concrete (PC) materials without sacrificing other important properties. Occupational exposures can occur all along the life cycle of a NM and “nanoproducts” from research through scale-up, product development, manufacturing, and end of life. The main objective of the present study is to analyse and compare different qualitative risk assessment methods during the production of polymer mortars (PM) with NM. The laboratory scale production process was divided in 3 main phases (pre-production, production and post-production), which allow testing the assessment methods in different situations. The risk assessment involved in the manufacturing process of PM was made by using the qualitative analyses based on: French Agency for Food, Environmental and Occupational Health & Safety method (ANSES); Control Banding Nanotool (CB Nanotool); Ecole Polytechnique Fédérale de Lausanne method (EPFL); Guidance working safely with nanomaterials and nanoproducts (GWSNN); Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, Italy method (ISPESL); Precautionary Matrix for Synthetic Nanomaterials (PMSN); and Stoffenmanager Nano. It was verified that the different methods applied also produce different final results. In phases 1 and 3 the risk assessment tends to be classified as medium-high risk, while for phase 2 the more common result is medium level. It is necessary to improve the use of qualitative methods by defining narrow criteria for the methods selection for each assessed situation, bearing in mind that the uncertainties are also a relevant factor when dealing with the risk related to nanotechnologies field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is evaluating the interaction between several base pen grade asphalt binders (35/50, 50/70, 70/100, 160/220) and two different plastic wastes (EVA and HDPE), for a set of new polymer modified binders produced with different amounts of both plastic wastes. After analysing the results obtained for the several polymer modified binders evaluated in this study, including a commercial modified binder, it can be concluded that the new PMBs produced with the base bitumen 70/100 and 5% of each plastic waste (HDPE or EVA) results in binders with very good performance, similar to that of the commercial modified binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As increasingly more sophisticated materials and products are being developed and times-to-market need to be minimized, it is important to make available fast response characterization tools using small amounts of sample, capable of conveying data on the relationships between rheological response, process-induced material structure and product characteristics. For this purpose, a single / twin-screw mini-extrusion system of modular construction, with well-controlled outputs in the range 30-300 g/h, was coupled to a in- house developed rheo-optical slit die able to measure shear viscosity and normal-stress differences, as well as performing rheo-optical experiments, namely small angle light scattering (SALS) and polarized optical microscopy (POM). In addition, the mini-extruder is equipped with ports that allow sample collection, and the extrudate can be further processed into products to be tested later. Here, we present the concept and experimental set-up [1, 2]. As a typical application, we report on the characterization of the processing of a polymer blend and of the properties of extruded sheets. The morphological evolution of a PS/PMMA industrial blend along the extruder, the flow-induced structures developed and the corresponding rheological characteristics are presented, together with the mechanical and structural characteristics of produced sheets. The application of this experimental tool to other material systems will also be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.