5 resultados para Lineages TCIIc and TCIIa
em Universidade do Minho
Resumo:
The aim of this study was to determine if mycobacterial lineages affect infection risk, clustering, and disease progression among Mycobacterium tuberculosis cases in The Netherlands. Multivariate negative binomial regression models adjusted for patient-related factors and stratified by patient ethnicity were used to determine the association between phylogenetic lineages and infectivity (mean number of positive contacts around each patient) and clustering (as defined by number of secondary cases within 2 years after diagnosis of an index case sharing the same fingerprint) indices. An estimate of progression to disease by each risk factor was calculated as a bootstrapped risk ratio of the clustering index by the infectivity index. Compared to the Euro-American reference, Mycobacterium africanum showed significantly lower infectivity and clustering indices in the foreign-born population, while Mycobacterium bovis showed significantly lower infectivity and clustering indices in the native population. Significantly lower infectivity was also observed for the East African Indian lineage in the foreign-born population. Smear positivity was a significant risk factor for increased infectivity and increased clustering. Estimates of progression to disease were significantly associated with age, sputum-smear status, and behavioral risk factors, such as alcohol and intravenous drug abuse, but not with phylogenetic lineages. In conclusion, we found evidence of a bacteriological factor influencing indicators of a strain's transmissibility, namely, a decreased ability to infect and a lower clustering index in ancient phylogenetic lineages compared to their modern counterparts. Confirmation of these findings via follow-up studies using tuberculin skin test conversion data should have important implications on M. tuberculosis control efforts.
Resumo:
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70-50 ka into Eastern or Southern Africa, (2) postglacial movements (15-10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Resumo:
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Resumo:
Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.
Resumo:
There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20 % of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.