6 resultados para Limbs
em Universidade do Minho
Resumo:
The regular use of the computer in the office contributed to the appearance of many risk factors related with work-related musculoskeletal disorders (WRMSD) such as maintaining static sitting postures for long time and awkward postures of the head, neck and upper limbs, leading to increased muscle activity in the cervical spine and shoulders. The objective of this study was to evaluate the presence of risk factors for WRMSD in an office using the Rapid Assessment Office Strain method (ROSA). Based on the results of this ergonomic evaluation, an occupational gym program was designed and implemented. Thirty-eight workplaces were evaluated using the observation of the tasks and pictures records in order to characterize those tasks in more detail. The ROSA tool was applied by an observer, who selected the appropriate score based on the worker's posture as well as the time spent in each posture. Scores were recorded for the sections of the method, specifically Chair, Monitor and Mouse and Keyboard and Telephone. The scores were recorded in a sheet developed for the method. The mean ROSA final score was 3.61 ± 0.64, for Chair section was 3.45 ± 0.55, to Monitor and Telephone section was 3.11 ± 0.61, and to Mouse and Keyboard section was 2.11 ± 0.31. The results led to understand that the analyzed tasks represent situations of risk of discomfort and, according to the methods guidelines, further research and modifications of the workplace may be necessary. It should be emphasized that these scores may not be related to the poor available equipment but with the need to optimize their use by the workers. It was noticed also that the interaction of workers with the tasks and the adopted sitting posture at the computer throughout the day have effects at a muscular level, essentially for the cervical area and shoulders. ROSA tool is an useful and easy method to assess several risk factors associated with WRMSD, also allowing the design of specific occupational gym programs.
Resumo:
Dissertação de mestrado em Engenharia Humana
Resumo:
Dissertação de mestrado em Engenharia Humana
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica