2 resultados para Lerner, Daniel,--1917-1980--The passing of Traditional Society: Modernizing the Middle East

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timber connections represent the crucial part of a timber structure and a great variability exists in terms of types of connections and mechanisms. Taking as case study the widespread traditional timber frame structures, in particular the Portuguese Pombalino buildings, one of the most common timber connection is the half-lap joint. Connections play a major role in the overall behaviour of a structure, particularly when assessing their seismic response, since damage is concentrated at the connections. For this reason, an experimental campaign was designed and distinct types of tests were carried out on traditional half-lap joints to assess their in-plane response. In particular, pull-out and in-plane cyclic tests were carried out on real scale unreinforced connections. Subsequently, the connections were retrofitted, using strengthening techniques such as self-tapping screws, steel plates and GFRP sheets. The tests chosen were meant to capture the hysteretic behaviour and dissipative capacity of the connections and characterise their response and, therefore, their influence on the seismic response of timber frame walls, particularly concerning their uplifting and rotation capacity, that could lead to rocking in the walls. In this paper, the results of the experimental campaign are presented in terms of hysteretic curves, dissipated energy and equivalent viscous damping ratio. Moreover, recommendations are provided on the most appropriate retrofitting solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure and they are used worldwide. Moreover, they have been specifically adopted in codes and regulations during the XVIII and XIX centuries in the Mediterranean area. These structures generally consist of exterior masonry walls with timber elements embedded which tie the walls together and internal walls which have a timber frame with masonry infill and act as shearwalls. In order to preserve these structureswhich characterizemany cities in theworld it is important to better understand their behaviour under seismic actions. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. Generally, different types of infill could be applied to timber frame walls depending on the country, among which brick masonry, rubble masonry, hay and mud. The focus of this paper is to study the seismic behaviour of the walls considering different types of infill, specifically: masonry infill, lath and plaster and timber frame with no infill. Static cyclic tests have been performed on unreinforced timber frame walls in order to study their seismic capacity in terms of strength, stiffness, ductility and energy dissipation. The tests showed how in the unreinforced condition, the infill is able to guarantee a greater stiffness, ductility and ultimate capacity of the wall.