5 resultados para Klebsiella-aerogenes Urease

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rise of bacterial resistance against important drugs threatens their clinical utility. Fluoroquinones, one of the most important classes of contemporary antibiotics has also reported to suffer bacterial resistance. Since the general mechanism of bacterial resistance against fluoroquinone antibiotics (e.g. ofloxacin) consists of target mutations resulting in reduced membrane permeability and increased efflux by the bacteria, strategies that could increase bacterial uptake and reduce efflux of the drug would provide effective treatment. In the present study, we have compared the efficiencies of ofloxacin delivered in the form of free drug (OFX) and as nanoparticles on bacterial uptake and antibacterial activity. Although both poly(lactic-co-glycolic acid) (OFX-PLGA) and methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (OFX-mPEG-PLGA) nanoformulations presented improved bacterial uptake and antibacterial activity against all the tested human bacterial pathogens, namely, Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, OFX-mPEG-PLGA showed significantly higher bacterial uptake and antibacterial activity compared to OFX-PLGA. We have also found that mPEG-PLGA nanoencapsulation could significantly inhibit Bacillus subtilis resistance development against OFX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengineering