9 resultados para KW-2228
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents a novel concept of unidirectional bridgeless combined boost-buck converter for electric vehicles (EVs) battery chargers. The proposed converter is composed by two power stages: an ac-dc front-end converter used to interface the power grid and the dc-link, and a dc-dc back-end converter used to interface the dc-link and the batteries. The ac-dc converter is a bridgeless boost-type converter and the dc-dc converter is an interleaved buck-type converter. The proposed converter operates with sinusoidal grid current and unitary power factor for all operating power levels. Along the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the different stages describing the principle of operation, the power control theory, and the current control strategy, for both converters. Along the paper are presented several simulation results for a maximum power of 3.5 kW.
Resumo:
Las fibras del seudotallo de plátano (FSP) fueron modificadas mediante epiclorhidrina (EP), anhídrido acético (AA), y su combinación (AA_EP), y con plasma a tres descargas de barrera dieléctrica (DBD) 1, 3 y 6 kW min m-2. Las FSP tratadas y sin tratar fueron caracterizadas mediante espectroscopia infrarroja por la transformada de Fourier (FT-IR), termogravimetría (TGA), microscopía electrónica de barrido (SEM) y pruebas mecánicas de tensión y de humectabilidad. Los espectros FT-IR, las micrografías SEM, y el análisis TGA indicaron pérdidas de lignina, hemicelulosa, impurezas y ceras. Estos efectos en conjunto con las reacciones de grupos OH y -C-C-, con los tratamientos químicos y de plasma respectivamente, incrementaron la hidrofobicidad de las FSP tratadas. Los tratamientos químicos produjeron reacciones de esterificación, eterificación y entrecruzamiento de los grupos OH libres en las FSP, lo que hizo que mostraran mayor rigidez que las expuestas al plasma. Las micrografías SEM mostraron que las FSP expuestas al plasma quedaron con superficie más irregular y rugosa que la de las FSP tratadas químicamente. La humectabilidad de las fibras, medida mediante pruebas de ángulo de contacto, se redujo como consecuencia de ambos tratamientos, característica importante para un relleno en los materiales compuestos.
Resumo:
This paper proposes a single-phase reconfigurable battery charger for Electric Vehicle (EV) that operates in three different modes: Grid-to-Vehicle (G2V) mode, in which the traction batteries are charged from the power grid; Vehicle-to-Grid (V2G) mode, in which the traction batteries deliver part of the stored energy back to the power grid; and in Traction-to-Auxiliary (T2A) mode, in which the auxiliary battery is charged from the traction batteries. When connected to the power grid, the battery charger works with sinusoidal current in the AC side, for both G2V and V2G modes, and also regulates the reactive power. When the EV is disconnected from the power grid, the control algorithms are modified and the full-bridge AC-DC bidirectional converter works as a full-bridge isolated DC-DC converter that is used to charge the auxiliary battery of the EV, avoiding the use of an additional charger to accomplish this task. To assess the behavior of the proposed reconfigurable battery charger under different operation scenarios, a 3.6 kW laboratory prototype has been developed and experimental results are presented.
Resumo:
[INTRODUCTION] An accurate preoperative rectal cancer staging is crucial to the correct management of the disease. Despite great controversy around this issue, pelvic magnetic resonance (RM) is said to be the imagiologic standard modality. This work aimed to evaluate magnetic resonance accuracy in preoperative rectal cancer staging comparing with the anatomopathological results. METHODS We calculated sensibility, specificity, positive (VP positive) and negative (VP negative) predictive values for each T and N. We evaluated the concordance between both methods of staging using the Cohen weighted K (Kw), and through ROC curves, we evaluated magnetic resonance accuracy in rectal cancer staging. RESULTS 41 patients met the inclusion criteria. We achieved an efficacy of 43.9% for T and 61% for N staging. The respective sensibility, specificity, positive and negative predictive values are 33.3%, 94.7%, 33.3% and 94.7% for T1; 62.5%, 32%, 37.0% and 57.1% for T2; 31.8%, 79%, 63.6% and 50% for T3 and 27.8%, 87%, 62.5% and 60.6% for N. We obtained a poor concordance for T and N staging and the anatomopathological results. The ROC curves indicated that magnetic resonance is ineffective in rectal cancer staging. CONCLUSION Magnetic resonance has a moderate efficacy in rectal cancer staging and the major difficulty is in differentiating T2 and T3.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Operation modes for the electric vehicle in smart grids and smart homes : present and proposed modes
Resumo:
This paper presents the main operation modes for an electric vehicle (EV) battery charger framed in smart grids and smart homes, i.e., are discussed the present-day and are proposed new operation modes that can represent an asset towards EV adoption. Besides the well-known grid to vehicle (G2V) and vehicle to grid (V2G), this paper proposes two new operation modes: Home-to-vehicle (H2V), where the EV battery charger current is controlled according to the current consumption of the electrical appliances of the home (this operation mode is combined with the G2V and V2G); Vehicle-for-grid (V4G), where the EV battery charger is used for compensating current harmonics or reactive power, simultaneously with the G2V and V2G operation modes. The vehicle-to-home (V2H) operation mode, where the EV can operate as a power source in isolated systems or as an off-line uninterruptible power supply to feed priority appliances of the home during power outages of the electrical grid is presented in this paper framed with the other operation modes. These five operation modes were validated through experimental results using a developed 3.6 kW bidirectional EV battery charger prototype, which was specially designed for these operation modes. The paper describes the developed EV battery charger prototype, detailing the power theory and the voltage and current control strategies used in the control system. The paper presents experimental results for the various operation modes, both in steady-state and during transients.