2 resultados para KINETICS OF THE HOMOGENEOUS ACYLATION OF CELLULOSE

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cutinase from Thermobifida fusca was used to esterify the hydroxyl groups of cellulose with the fatty acids from triolein. Cutinase and triolein were pre-adsorbed on cotton and the reaction proceeded in a dry state during 48 hours at 35ºC. The cutinase-catalyzed esterification of the surface of cotton fabric resulted in the linkage of the oleate groups to the glycoside units of cotton cellulose. The superficial modification was confirmed by performing ATR-FTIR on treated cotton samples and by MALDI-TOF analysis of the liquors from the treatment of the esterified cotton with a crude cellulase mixture. Modified cotton fabric also showed a significant increase of hydrophobicity. This work proposes a novel bio-based approach to obtain hydrophobic cotton. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.