3 resultados para Journals from the administration area

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) has been suggested to be a risk factor for multiple myeloma (MM), but the relationship between the two traits is still not well understood. The aims of this study were to evaluate whether 58 genome-wide-association-studies (GWAS)-identified common variants for T2D influence the risk of developing MM and to determine whether predictive models built with these variants might help to predict the disease risk. We conducted a case–control study including 1420 MM patients and 1858 controls ascertained through the International Multiple Myeloma (IMMEnSE) consortium. Subjects carrying the KCNQ1rs2237892T allele or the CDKN2A-2Brs2383208G/G, IGF1rs35767T/T and MADDrs7944584T/T genotypes had a significantly increased risk of MM (odds ratio (OR)=1.32–2.13) whereas those carrying the KCNJ11rs5215C, KCNJ11rs5219T and THADArs7578597C alleles or the FTOrs8050136A/A and LTArs1041981C/C genotypes showed a significantly decreased risk of developing the disease (OR=0.76–0.85). Interestingly, a prediction model including those T2D-related variants associated with the risk of MM showed a significantly improved discriminatory ability to predict the disease when compared to a model without genetic information (area under the curve (AUC)=0.645 vs AUC=0.629; P=4.05×10-06). A gender-stratified analysis also revealed a significant gender effect modification for ADAM30rs2641348 and NOTCH2rs10923931 variants (Pinteraction=0.001 and 0.0004, respectively). Men carrying the ADAM30rs2641348C and NOTCH2rs10923931T alleles had a significantly decreased risk of MM whereas an opposite but not significant effect was observed in women (ORM=0.71 and ORM=0.66 vs ORW=1.22 and ORW=1.15, respectively). These results suggest that TD2-related variants may influence the risk of developing MM and their genotyping might help to improve MM risk prediction models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of guard cilia and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the dorsomedial nucleus of the hypothalamus (DMH) by galanin (GAL) induces behavioural hyperalgesia. Since DMH neurones do not project directly to the spinal cord, we hypothesized that the medullary dorsal reticular nucleus (DRt), a pronociceptive region projecting to the spinal dorsal horn (SDH) and/or the serotoninergic raphe-spinal pathway acting on the spinal 5-HT3 receptor (5HT3R) could relay descending nociceptive facilitation induced by GAL in the DMH. Heat-evoked paw-withdrawal latency (PWL) and activity of SDH neurones were assessed in monoarthritic (ARTH) and control (SHAM) animals after pharmacological manipulations of the DMH, DRt and spinal cord. The results showed that GAL in the DMH and glutamate in the DRt lead to behavioural hyperalgesia in both SHAM and ARTH animals, which is accompanied particularly by an increase in heat-evoked responses of wide-dynamic range neurons, a group of nociceptive SDH neurones. Facilitation of pain behaviour induced by GAL in the DMH was reversed by lidocaine in the DRt and by ondansetron, a 5HT3R antagonist, in the spinal cord. However, the hyperalgesia induced by glutamate in the DRt was not blocked by spinal ondansetron. In addition, in ARTH but not SHAM animals PWL was increased after lidocaine in the DRt and ondansetron in the spinal cord. Our data demonstrate that GAL in the DMH activates two independent descending facilitatory pathways: (i) one relays in the DRt and (ii) the other one involves 5-HT neurones acting on spinal 5HT3Rs. In experimental ARTH, the tonic pain-facilitatory action is increased in both of these descending pathways.