11 resultados para J.L. Clark Manufacturing Co.
em Universidade do Minho
Resumo:
Co-cultures of two or more cell types and biodegradable biomaterials of natural origin have been successfully combined to recreate tissue microenvironments. Segregated co-cultures are preferred over conventional mixed ones in order to better control the degree of homotypic and heterotypic interactions. Hydrogel-based systems in particular, have gained much attention to mimic tissue-specific microenvironments and they can be microengineered by innovative bottom-up approaches such as microfluidics. In this study, we developed bi-compartmentalized (Janus) hydrogel microcapsules of methacrylated hyaluronic acid (MeHA)/methacrylated-chitosan (MeCht) blended with marine-origin collagen by droplet-based microfluidics co-flow. Human adipose stem cells (hASCs) and microvascular endothelial cells (hMVECs) were co-encapsulated to create platforms of study relevant for vascularized bone tissue engineering. A specially designed Janus-droplet generator chip was used to fabricate the microcapsules (<250â μm units) and Janus-gradient co-cultures of hASCs: hMVECs were generated in various ratios (90:10; 75:25; 50:50; 25:75; 10:90), through an automated microfluidic flow controller (Elveflow microfluidics system). Such monodisperse 3D co-culture systems were optimized regarding cell number and culture media specific for concomitant maintenance of both phenotypes to establish effective cell-cell (homotypic and heterotypic) and cell-materials interactions. Cellular parameters such as viability, matrix deposition, mineralization and hMVECs re-organization in tube-like structures, were enhanced by blending MeHA/MeCht with marine-origin collagen and increasing hASCs: hMVECs co-culture gradient had significant impact on it. Such Janus hybrid hydrogel microcapsules can be used as a platform to investigate biomaterials interactions with distinct combined cell populations.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Inspired by the native co-existence of multiple cell types and from the concept of deconstructing the stem cell niche, we propose a co-encapsulation strategy within liquified capsules. The present team has already proven the application of liquified capsules as bioencapsulation systems1. Here, we intend to use the optimized system towards osteogenic differentiation. Capsules encapsulating adipose stem cells alone (MONO-capsules) or in co-culture with endothelial cells (CO-capsules) were maintained in endothelial medium with or without osteogenic differentiation factors. The suitability of the capsules for living stem and endothelial cells encapsulation was demonstrated by MTS and DNA assays. The osteogenic differentiation was assessed by quantifying the deposition of calcium and the activity of ALP up to 21 days. CO capsules had an enhanced osteogenic differentiation, even when cultured in the absence of osteogenic factors. Furthermore, osteopontin and CD31 could be detected, which respectively indicate that osteogenic differentiation had occurred and endothelial cells maintained their phenotype. An enhanced osteogenic differentiation by co-encapsulation was also confirmed by the upregulation of osteogenic markers (BMP-2, RUNX2, BSP) while the expression of angiogenic markers (VEGF, vWF, CD31) revealed the presence of endothelial cells. The proposed capsules can also act as a growth factor release system upon implantation, as showed by VEGF and BMP-2 quantification. These findings demonstrate that the co-encapsulation of stem and endothelial cells within liquified injectable capsules provides a promising strategy for bone tissue engineering.
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Tese de Doutoramento em Sociologia
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.
Resumo:
O conceito de qualidade de vida surge pela primeira vez em 1920, através do economista inglês Arthur Cecil Pigou, que utiliza este termo para descrever o impacto governamental sobre a vida das pessoas mais desfavorecidas. Com a instalação de uma era industrializada e com o fim da 2º Guerra Mundial, a sociedade mudou de paradigma e iniciou uma procura incessante de formas para melhorar a sua qualidade de vida. Este conceito desenvolve-se juntamente com o desenvolvimento do conceito de educação, saúde, habitação, transporte, trabalho e lazer, bem como indicadores do aumento da esperança de vida, a diminuição da mortalidade infantil e dos níveis de poluição. O avanço da tecnologia teve um papel fundamental para a evolução desses conceitos, bem como o Design na procura de soluções para aplicação dessas mesmas tecnologias. No caso concreto da indústria tèxtil, a tendência é o desenvolvimento de têxteis inteligentes envolvendo a engenharia electrónica no seu processo de conceptualização e de fabrico. A chamada tecnologia wearable abre novos horizontes para a criação de soluções inovadoras, abrindo novos nichos de mercado com elevado valor acrescentado. Existem atualmente vários produtos no mercado cuja funcionalidade e utilidade lhes conferiu um estatuto imutável ao longo dos anos, onde a evolução não avançou na tendência atual. Esse é o caso dos tecidos estreitos, cuja funcionalidade poderá adquirir novas capacidades e ser utilizada em diferentes componentes têxteis nas mais variadas áreas. Essas capacidades poderão ser acrescentadas pela incorporação de materiais com luminosidade (Led’s e L-Wire) nas suas estruturas. Neste estudo realizado o design de produtos com novas funcionalidades, adaptando as tecnologias até agora desenvolvidas em novas soluções e/ou novas recriações de produto.
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.