22 resultados para Invasive Fungal-infections

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

[Excerpt] The incidence of fungal infections has greatly increased in patients under sustained immunosuppression with considerable risk associated. Difficulties regarding prompt diagnosis and the limited therapeutic options dictate high mortality rates. Available antifungals display substantial toxicity, a predictable consequence of the cellular structure of the organisms involved, reduced spectrum of activity, and drug interactions. Our group had previously identified three (Z)-5-amino-N'-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides 1 [aryl= phenyl (1a), 4-fluorophenyl (1b), 3fluorophenyl (1c)] as potent antifungal agents.1 (...)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics and nowadays, a common infection can be fatal. To revert this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since P. aeruginosa is one of the most common causes of healthcare-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review will further address the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Gß protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clinica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed aquatic hyphomycete diversity in autumn and spring on oak leaves decomposing in five streams along a gradient of eutrophication in the Northwest of Portugal. Diversity was assessed through microscopy-based (identification by spore morphology) and DNA-based techniques (Denaturing Gradient Gel Electrophoresis and 454 pyrosequencing). Pyrosequencing revealed five times greater diversity than DGGE. About 21% of all aquatic hyphomycete species were exclusively detected by pyrosequencing and 26% exclusively by spore identification. In some streams, more than half of the recorded species would have remained undetected if we had relied only on spore identification. Nevertheless, in spring aquatic hyphomycete diversity was higher based on spore identification, probably because many species occurring in this season are not yet connected to ITS barcodes in genetic databases. Pyrosequencing was a powerful tool for revealing aquatic hyphomycete diversity on decomposing plant litter in streams and we strongly encourage researchers to continue the effort in barcoding fungal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.