7 resultados para Interleukine-6, Multiple Sclerosis, regulatory T cells, humanized mice
em Universidade do Minho
Resumo:
Purpose: Fifty percent of patients with Multiple Sclerosis (MS) are estimated to have cognitive impairments leading to considerable decline in productivity and quality of life. Cognitive intervention has been considered to complement pharmacological treatments. However, a lack of agreement concerning the efficacy of cognitive interventions in MS still exists. A systematic review and meta-analysis was conducted to assess the effects of cognitive interventions in MS. Methods: To overcome limitations of previous meta-analyses, several databases were searched only for Randomized Clinical Trials (RCTs) with low risk of bias. Results: Five studies (total of 139 participants) met our eligibility criteria. Although good completion and adherence rates were evident, we found no evidence of intervention effects on cognition or mood in post-intervention or follow-up assessments. Conclusions: This is the first meta-analysis assessing the effects of cognitive intervention in MS including only RCTs with comparable conditions. Research regarding efficacy, cost-effectiveness and feasibility is still in its infancy. Caution is advised when interpreting these results due to the small number of RCTs meeting the inclusion criteria. Considering the costs of disease, good completion and adherence rates of this approach, further research is warranted. Recommendations concerning improved research practices in the field are presented as well.
Resumo:
Dissertação de mestrado em Advanced Optometry
Resumo:
Tese de Doutoramento em Psicologia Clínica / Psicologia
Resumo:
Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections
Resumo:
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Resumo:
The blood brain barrier (BBB) and the blood cerebrospinal fluid barrier (BCSFB) form the barriers of the brain. These barriers are essential not only for the protection of the brain, but also in regulating the exchange of cells and molecules in and out of the brain. The choroid plexus (CP) epithelial cells and the arachnoid membrane form the BCSFB. The CP is structurally divided into two independent compartments: one formed by a unique and continuous line of epithelial cells that rest upon a basal lamina; and, a second consisting of a central core formed by connective and highly vascularized tissue populated by diverse cell types (fibroblasts, macrophages and dendritic cells). Here, we review how the CP transcriptome and secretome vary depending on the nature and duration of the stimuli to which the CP is exposed. Specifically, when the peripheral stimulation is acute the CP response is rapid, strong and transient, whereas if the stimulation is sustained in time the CP response persists but it is weaker. Furthermore, not all of the epithelium responds at the same time to peripheral stimulation, suggesting the existence of a synchrony system between individual CP epithelial cells.
Resumo:
Tese de Doutoramento em Ciências da Saúde