2 resultados para Interchange
em Universidade do Minho
Resumo:
The authors propose a mathematical model to minimize the project total cost where there are multiple resources constrained by maximum availability. They assume the resources as renewable and the activities can use any subset of resources requiring any quantity from a limited real interval. The stochastic nature is inferred by means of a stochastic work content defined per resource within an activity and following a known distribution and the total cost is the sum of the resource allocation cost with the tardiness cost or earliness bonus in case the project finishes after or before the due date, respectively. The model was computationally implemented relying upon an interchange of two global optimization metaheuristics – the electromagnetism-like mechanism and the evolutionary strategies. Two experiments were conducted testing the implementation to projects with single and multiple resources, and with or without maximum availability constraints. The set of collected results shows good behavior in general and provide a tool to further assist project manager decision making in the planning phase.
Resumo:
Biofilm research is growing more diverse and dependent on high-throughput technologies and the large-scale production of results aggravates data substantiation. In particular, it is often the case that experimental protocols are adapted to meet the needs of a particular laboratory and no statistical validation of the modified method is provided. This paper discusses the impact of intra-laboratory adaptation and non-rigorous documentation of experimental protocols on biofilm data interchange and validation. The case study is a non-standard, but widely used, workflow for Pseudomonas aeruginosa biofilm development, considering three analysis assays: the crystal violet (CV) assay for biomass quantification, the XTT assay for respiratory activity assessment, and the colony forming units (CFU) assay for determination of cell viability. The ruggedness of the protocol was assessed by introducing small changes in the biofilm growth conditions, which simulate minor protocol adaptations and non-rigorous protocol documentation. Results show that even minor variations in the biofilm growth conditions may affect the results considerably, and that the biofilm analysis assays lack repeatability. Intra-laboratory validation of non-standard protocols is found critical to ensure data quality and enable the comparison of results within and among laboratories.