21 resultados para Intensive care unity
em Universidade do Minho
Resumo:
In Intensive Medicine, the presentation of medical information is done in many ways, depending on the type of data collected and stored. The way in which the information is presented can make it difficult for intensivists to quickly understand the patient's condition. When there is the need to cross between several types of clinical data sources the situation is even worse. This research seeks to explore a new way of presenting information about patients, based on the timeframe in which events occur. By developing an interactive Patient Timeline, intensivists will have access to a new environment in real-time where they can consult the patient clinical history and the data collected until the moment. The medical history will be available from the moment in which patients is admitted in the ICU until discharge, allowing intensivist to examine data regarding vital signs, medication, exams, among others. This timeline also intends to, through the use of information and models produced by the INTCare system, combine several clinical data in order to help diagnose the future patients’ conditions. This platform will help intensivists to make more accurate decision. This paper presents the first approach of the solution designed
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.
Resumo:
The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.
Resumo:
Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm
Resumo:
Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.
Resumo:
Dissertação de mestrado em Bioinformática
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clinica)
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas
Resumo:
Relatório de estágio de mestrado em Enfermagem da Pessoa em Situação Crítica
Resumo:
Dissertação de mestrado em Enfermagem da Pessoa em Situação Crítica