7 resultados para Intellectual Task Solver
em Universidade do Minho
Resumo:
Doctoral Program in Computer Science
Resumo:
Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.
Resumo:
The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes. Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions.
Resumo:
[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)
Resumo:
[Extrat] Multiphase flows are relevant in several industrial processes, thus the availability of accurate numerical modeling tools, able to support the design of products and processes, is of much significance. OpenFOAM version 2.3.x comprises a multiphase flow solver able to couple Eulerian and Lagrangian phases using the discrete particles method (DPM), the DPMFoam. In this work the DPMFoam solver is assessed by comparing its predictions with analytical results and experimental and simulated data available in the literature. They are results from Goldschmidt’s [1] and Hoomans’s [2] theses and the analytical Ergun equation. The goal was to define accuracy and performance of DPMFoam in general scientific or commercial applications. Obtained results demonstrate a good agreement with the reference simulation data and is within reasonable deviations from the experimental values. (...)
Resumo:
The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes . Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.