5 resultados para Insulin Gene
em Universidade do Minho
Resumo:
Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischemia, inflammation, and infection costing $7.5 billion/year in the US alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization, and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA microparticles that provides a sustained release of bioactive insulin for >20days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring, healing. Using a heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04mg insulin/cm2, every three days for 9 days, have faster closure, faster rate of disintegration of dead tissue, and decreased oxidative stress.In addition, in insulin-treated wounds the pattern of neutrophil inflammatory response suggests faster clearing of the burn dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibers organized more like a basket weave (normal skin) than aligned and crosslinked (scar tissue). In summary , application of ASD-containing insulin-loaded PLGA particles on burns every three days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.
Resumo:
The unravelling of hair pigmentation genetics and robust delivery systems to the hair follicle (HF) will allow the development of a new class of colouring products. The challenge will be changing hair colour from inside out by safely regulating the activity of target genes through the specific delivery of synthetic/natural compounds, proteins, genes, or small RNAs.
Resumo:
Tese de Doutoramento em Biologia de Plantas.
Resumo:
Up to 20% of patients with pilocytic astrocytoma (PA) experience a poor outcome. BRAF alterations and Fibroblast growth factor receptor 1 (FGFR1) point mutations are key molecular alterations in Pas, but their clinical implications are not established. We aimed to determine the frequency and prognostic role of these alterations in a cohort of 69 patients with PAs. We assessed KIAA1549:BRAF fusion by fluorescence in situ hybridization and BRAF (exon 15) mutations by capillary sequencing. In addition, FGFR1 expression was analyzed using immunohistochemistry, and this was compared with gene amplification and hotspot mutations (exons 12 and 14) assessed by fluorescence in situ hybridization and capillary sequencing. KIAA1549:BRAF fusion was identified in almost 60% of cases. Two tumors harbored mutated BRAF. Despite high FGFR1 expression overall, no cases had FGFR1 amplifications. Three cases harbored a FGFR1 p.K656E point mutation. No correlation was observed between BRAF and FGFR1 alterations. The cases were predominantly pediatric (87%), and no statistical differences were observed in molecular alterations-related patient ages. In summary, we confirmed the high frequency of KIAA1549:BRAF fusion in PAs and its association with a better outcome. Oncogenic mutations of FGFR1, although rare, occurred in a subset of patients with worse outcome. These molecular alterations may constitute alternative targets for novel clinical approaches, when radical surgical resection is unachievable.
Resumo:
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00275