11 resultados para Impedance (Bioelectric)
em Universidade do Minho
Resumo:
In an underwater environment it is difficult to implement solutions for wireless communications. The existing technologies using electromagnetic waves or lasers are not very efficient due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus has been used in underwater long-distance communications. The much slower speed of acoustic propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is another limiting factor for efficient communication and networking. For high data-rates and real-time applications it is necessary to use frequencies in the MHz range, allowing communication distances of hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) designed to optimize the performance when digital modulations are used. The transducers performance for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are compared.
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
In this study, the macro steel fiber (SF), carbon fiber (CF) and nano carbon black (NCB) as triphasic conductive materials were added into concrete, in order to improve the conductivity and ductility of concrete. The influence of NCB, SF and CF on the post crack behavior and conductivity of concrete was explored. The effect of the triphasic conductive materials on the self-diagnosing ability to the load–deflection property and crack widening of conductive concrete member subjected to bending were investigated. The relationship between the fractional change in surface impedance (FCR) and the crack opening displacement (COD) of concrete beams with conductive materials has been established. The results illustrated that there is a linear relationship between COD and FCR.
Resumo:
Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.
Resumo:
The sol-gel method was employed in the synthesis of di-urethane cross-linked poly(-caprolactone) (d-PCL(530)/siloxane biohybrid ormolytes incorporating copper perchlorate, (Cu(ClO4)2). The highest ionic conductivity of the d PCL(530)/siloxanenCu(ClO4)2 system is that with n = 10 (1.4 x 10-7 and 1.4 x 10-5 S cm-1, at 25 and 100 ºC, respectively). In an attempt to understand the ionic conductivity/ionic association relationship, we decide to inspect the chemical environment experienced by the Cu2+ ions in the d-PCL(530)/siloxane medium. The observed EPR spectra are typical of isolated monomeric Cu2+ ions in axially distorted sites. The molecular orbital coefficients obtained from the EPR spin Hamiltonian parameters and the optical absorption band suggests that bonding between the Cu2+ and its ligand in the ormolytes are moderately ionic. Investigation by photoluminescence spectroscopy did not evidence or allow selective excitation of transitions corresponding to complexed Cu2+ species.
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
Polymer electrolytes are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Generically, solid polymer electrolytes (SPEs) are mixtures of salts with soft polar polymers. SPEs have many advantages including high energy density, no risk of leakage, no issues related to the presence of solvent, wide electrochemical stability windows, simplified processability and light weight. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying high ionic conductivity we have produced in the present work, flexible films based on different polymers or hybrids incorporating different salts. The polymer electrolytes studied here have been characterized by means of Differential Scanning Calorimetry, Thermogravimetric Analysis, X-ray diffraction, Polarized Optical Microscopy, complex impedance spectroscopy and cyclic voltammetry. An evaluation of the performance of the sample with the highest conductivity as electrolyte in all solid-state ECDs was performed.
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.