3 resultados para Immune response.
em Universidade do Minho
Resumo:
Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Tuberculosis (TB) and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) constitute the main burden of infectious disease in resource-limited countries. In the individual host, the two pathogens, Mycobacterium tuberculosis and HIV, potentiate one another, accelerating the deterioration of immunological functions. In high-burden settings, HIV coinfection is the most important risk factor for developing active TB, which increases the susceptibility to primary infection or reinfection and also the risk of TB reactivation for patients with latent TB. M. tuberculosis infection also has a negative impact on the immune response to HIV, accelerating the progression from HIV infection to AIDS. The clinical management of HIV-associated TB includes the integration of effective anti-TB treatment, use of concurrent antiretroviral therapy (ART), prevention of HIV-related comorbidities, management of drug cytotoxicity, and prevention/treatment of immune reconstitution inflammatory syndrome (IRIS).