7 resultados para IRON SULFIDE NANOSTRUCTURES

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of surface plasmon-polaritons (SPPs) in graphene are discussed and several possible ways of coupling electromagnetic radiation in the terahertz (THz) spectral range to this type of surface waves are described: (i) the attenuated total reflection (ATR) method employing a prism, (ii) graphene-based gratings or graphene monolayers with modulated conductivity, (iii) a metal stripe on top of the graphene layer, and (iv) a nanoparticle located above it. Potentially interesting for applications SPP effects, such as switching, modulation and polarization of THz radiation, as well as its enhanced absorption in graphene, are considered. The discussion also concerns the impact of the nonlinear properties of graphene, such as optical bistability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Under anaerobic conditions long chain fatty acids (LCFA) can be converted to methane by syntrophic bacteria and methanogenic archaea. LCFA degradation was also reported in the presence of alternative hydrogenotrophic partners, such as sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB), which generally show higher affinity for H2 than methanogens and are more resistant to LCFA [1,2,3]. Their presence in a microbial culture degrading LCFA can be advantageous to reduce LCFA toxicity towards methanogens, although high concentrations of external electron acceptor (EEA) can lead to outcompetition of methanogens and cease methane production. In this work, we tested the effect of adding sub-stoichiometric concentrations of sulfate and iron(III) to methanogenic communities degrading LCFA. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Geociências (área de especialização em Valorização de Recursos Geológicos)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia