16 resultados para IP Network
em Universidade do Minho
Resumo:
IP networks are currently the major communication infrastructure used by an increasing number of applications and heterogeneous services, including voice services. In this context, the Session Initiation Protocol (SIP) is a signaling protocol widely used for controlling multimedia communication sessions such as voice or video calls over IP networks, thus performing vital functions in an extensive set of public and enter- prise solutions. However, the SIP protocol dissemination also entails some challenges, such as the complexity associated with the testing/validation processes of IMS/SIP networks. As a consequence, manual IMS/SIP testing solutions are inherently costly and time consuming tasks, being crucial to develop automated approaches in this specific area. In this perspective, this article presents an experimental approach for automated testing/validation of SIP scenarios in IMS networks. For that purpose, an automation framework is proposed allowing to replicate the configuration of SIP equipment from the pro- duction network and submit such equipment to a battery of tests in the testing network. The proposed solution allows to drastically reduce the test and validation times when compared with traditional manual approaches, also allowing to enhance testing reliability and coverage. The automation framework comprises of some freely available tools which are conveniently integrated with other specific modules implemented within the context of this work. In order to illustrate the advantages of the proposed automated framework, a real case study taken from a PT Inovação customer is presented comparing the time required to perform a manual SIP testing approach with the one time required when using the proposed auto- mated framework. The presented results clearly corroborate the advantages of using the presented framework.
Resumo:
Nowadays, many P2P applications proliferate in the Internet. The attractiveness of many of these systems relies on the collaborative approach used to exchange large resources without the dependence and associated constraints of centralized approaches where a single server is responsible to handle all the requests from the clients. As consequence, some P2P systems are also interesting and cost-effective approaches to be adopted by content-providers and other Internet players. However, there are several coexistence problems between P2P applications and In- ternet Service Providers (ISPs) due to the unforeseeable behavior of P2P traffic aggregates in ISP infrastructures. In this context, this work proposes a collaborative P2P/ISP system able to underpin the development of novel Traffic Engi- neering (TE) mechanisms contributing for a better coexistence between P2P applications and ISPs. Using the devised system, two TE methods are described being able to estimate and control the impact of P2P traffic aggregates on the ISP network links. One of the TE methods allows that ISP administrators are able to foresee the expected impact that a given P2P swarm will have in the underlying network infrastructure. The other TE method enables the definition of ISP friendly P2P topologies, where specific network links are protected from P2P traffic. As result, the proposed system and associated mechanisms will contribute for improved ISP resource management tasks and to foster the deployment of innovative ISP-friendly systems.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
PhD Thesis in Bioengineering
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
Dissertação de mestrado em Engenharia de Telecomunicações e Informática
Resumo:
Long-term exposure to transmeridian flights has been shown to impact cognitive functioning. Nevertheless, the immediate effects of jet lag in the activation of specific brain networks have not been investigated. We analyzed the impact of short-term jet lag on the activation of the default mode network (DMN). A group of individuals who were on a transmeridian flight and a control group went through a functional magnetic resonance imaging acquisition. Statistical analysis was performed to test for differences in the DMN activation between groups. Participants from the jet lag group presented decreased activation in the anterior nodes of the DMN, specifically in bilateral medial prefrontal and anterior cingulate cortex. No areas of increased activation were observed for the jet lag group. These results may be suggestive of a negative impact of jet lag on important cognitive functions such as introspection, emotional regulation and decision making in a few days after individuals arrive at their destination.
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Tese de Doutoramento em Biologia de Plantas.
Resumo:
Dissertação de Mestrado (Programa Doutoral em Informática)
Resumo:
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00275
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.