5 resultados para INSIGHTS

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection of spawning habitat of a population of Octopus vulgaris that is subject to a small-scale exploitation was studied in the Cíes Islands within the National Park of the Atlantic Islands of Galicia (NW Spain). The technique used was visual censuses by scuba diving. We conducted 93 visual censuses from April 2012 to April 2014. The total swept area was 123.69 ha. Habitat features (season, depth, zone, bottom temperature, swept area, bottom substrate type, and creels fishing impact) were evaluated as predictors of the presence/absence of spawning dens using GAM models. O. vulgaris has a noteworthy preference for spawning in areas with hard bottom substrate and moderate depth (approximately 20 m). The higher density of spawning dens (1.08ha−1) was found in a surveyed area of 50.14ha located in the northeastern part of the northern Cíes Island. We propose to protect the area comprised from Punta Escodelo to Punta Ferreiro between 5 and 30 m depth. This area has a surface of 158 ha equivalent to 5.98% of the total marine area of the Cíes islands. The strengths and weaknesses of a management strategy based on the protection of the species’ spawning habitat are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Biomédica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplementary data associated with this article can be found,in the online version, at http://dx.doi.org/10.1016/j.ijbiomac.2016.05.018.