12 resultados para IMPRINTING CENTER REGION
em Universidade do Minho
Resumo:
Given the fact that using timber frame structures has proven to improve the seismic behavior of vernacular architecture, as has been reported in past earthquakes in many countries, its preservation as a traditional earthquake resistant practice is important. This paper firstly intends to evaluate whether the use of timber frames as a traditional seismic resistant technique for vernacular architecture in the South of Portugal, traditionally a seismic region, is still active. Secondly, the city of Vila Real de Santo António was selected as a case study because it also followed a Pombaline development contemporary to the reconstruction of Lisbon. The plan included the provision of timber frame partition walls for some of the buildings and, thus, an overview of the type of constructions originally conceived is provided. Finally, the alterations done in the original constructions and the current state of the city center are described and the effect of these changes on the seismic vulnerability of the city is discussed.
Resumo:
A measurement is presented of the tt¯ inclusive production cross section in pp collisions at a center-of-mass energy of s√=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb−1. The cross section was obtained using a likelihood discriminant fit and b-jet identification was used to improve the signal-to-background ratio. The inclusive tt¯ production cross section was measured to be 260±1(stat)+22−23(stat)±8(lumi)±4(beam) pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 253+13−15 pb. The tt¯→(e,μ)+jets production cross section in the fiducial region determined by the detector acceptance is also reported.
Resumo:
The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ′+ℓ′−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at center-of-mass energies of 7 TeV and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations at 125.36 GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44 +0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7 +0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3 +1.6−0.9.
Resumo:
A search is performed for top-quark pairs (tt¯) produced together with a photon (γ) with transverse momentum >20 GeV using a sample of tt¯ candidate events in final states with jets, missing transverse momentum, and one isolated electron or muon. The dataset used corresponds to an integrated luminosity of 4.59 fb−1 of proton--proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. In total 140 and 222 tt¯γ candidate events are observed in the electron and muon channels, to be compared to the expectation of 79±26 and 120±39 non-tt¯γ background events respectively. The production of tt¯γ events is observed with a significance of 5.3 standard deviations away from the null hypothesis. The tt¯γ production cross section times the branching ratio (BR) of the single-lepton decay channel is measured in a fiducial kinematic region within the ATLAS acceptance. The measured value is σfidtt¯γ=63±8(stat.)+17−13(syst.)±1(lumi.) fb per lepton flavor, in good agreement with the leading-order theoretical calculation normalized to the next-to-leading-order theoretical prediction of 48±10 fb.
Resumo:
The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Resumo:
Genome-wide studies of African populations have the potential to reveal powerful insights into the evolution of our species, as these diverse populations have been exposed to intense selective pressures imposed by infectious diseases, diet, and environmental factors. Within Africa, the Sahel Belt extensively overlaps the geographical center of several endemic infections such as malaria, trypanosomiasis, meningitis, and hemorrhagic fevers. We screened 2.5 million single nucleotide polymorphisms in 161 individuals from 13 Sahelian populations, which together with published data cover Western, Central, and Eastern Sahel, and include both nomadic and sedentary groups. We confirmed the role of this Belt as a main corridor for human migrations across the continent. Strong admixture was observed in both Central and Eastern Sahelian populations, with North Africans and Near Eastern/Arabians, respectively, but it was inexistent in Western Sahelian populations. Genome-wide local ancestry inference in admixed Sahelian populations revealed several candidate regions that were significantly enriched for non-autochthonous haplotypes, and many showed to be under positive selection. The DARC gene region in Arabs and Nubians was enriched for African ancestry, whereas the RAB3GAP1/LCT/MCM6 region in Oromo, the TAS2R gene family in Fulani, and the ALMS1/NAT8 in Turkana and Samburu were enriched for non-African ancestry. Signals of positive selection varied in terms of geographic amplitude. Some genomic regions were selected across the Belt, the most striking example being the malaria-related DARC gene. Others were Western-specific (oxytocin, calcium, and heart pathways), Eastern-specific (lipid pathways), or even population-restricted (TAS2R genes in Fulani, which may reflect sexual selection).
Resumo:
Measurements of differential cross sections for J/ψ production in p+Pb collisions at sNN−−−−√=5.02 TeV at the CERN Large Hadron Collider with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb−1. The J/ψ mesons are reconstructed in the dimuon decay channel over the transverse momentum range 8
Resumo:
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Resumo:
Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a key role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the endocrine response to stress. We here show that ELS programs the expression of the GR gene (Nr3c1) by site-specific hypermethylation at the CpG island (CGI) shore in hypothalamic neurons that produce corticotropin-releasing hormone (Crh), thus preventing Crh upregulation under conditions of chronic stress. CpGs mapping to the Nr3c1 CGI shore region are dynamically regulated by ELS and underpin methylation-sensitive control of this region's insulation-like function via Ying Yang 1 (YY1) binding. Our results provide new insight into how a genomic element integrates experience-dependent epigenetic programming of the composite proximal Nr3c1 promoter, and assigns an insulating role to the CGI shore.
Resumo:
[Excerpt] Although Acinetobacter baumannii has been the main agent for healthcare infections, recent reports suggest that some Acinetobacter environmental species should be considered as a potential cause of disease. In Angola, there are no previous data on its environmental reservoirs and resistance features. We aimed to unveil the occurrence and diversity of Acinetobacter species and the presence of resistance mechanisms in different non-clinical settings in Angola.