3 resultados para Hoof Wall Epidermis

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3]. Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projeto de investigação integrado de International Master in Sustainable Built Environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a new façade system that uses passive solutions in the search for energy efficiency. The differentials are the versatility and flexibility of the modules, which are important advantages of the system. The thermal performance of Trombe walls and glazings and the daylighting performance of glazing were the key aspects analyzed in the results. Computational simulations were accomplished for the thermal performance of different arrangements of the modules with DesignBuilder software. The glazing daylighting performance was studied by means of Ecotect and Desktop Radiance programs and compared with the transmittance curves of glazings. Occupancy profile and internal gains were fixed according to the Portuguese reality for both studies. The main characteristics considered in this research were the use of two double glazings, four different climates in Portugal and one and two Trombe walls in the façade. The results show an important reduction in the energy consumption with the use of Trombe walls and double self-cleaning glazing in the façade, which also presented better daylighting performance.