4 resultados para High-efficiency

em Universidade do Minho


Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work four asphalt mixtures were compared in terms of mechanical characteristics. One of the mixtures (control mixture) was used as a reference to the study of three mixtures produced with reclaimed asphalt pavement (RAP). One of the recycled mixtures incorporated 30% of RAP and the other two were produced with 50% of RAP. The effect of using a rejuvenator additive (3% rejuvenator) was also evaluated in one of the mixtures with 50% of RAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents results of an experimental investigation on the resistance to chemical attack (with sulphuric, hydrochloric and nitric acid) of several materials: OPC concrete, high-performance concrete, epoxy resin, acrylic painting and a fly ash-based geopolymeric mortar). Three types of acids with three high concentrations (10, 20 and 30%) were used to simulate long-term degradation. A cost analysis was also performed. The results show that the epoxy resin has the best resistance to chemical attack independently of the acid type and the acid concentration. However, the cost analysis shows that the epoxy resin-based solution is the least cost-efficient solution being 70% above the cost efficiency of the fly ash-based geopolymeric mortar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.