20 resultados para Healing Our Spirit Worldwide (HOSW)

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischemia, inflammation, and infection costing $7.5 billion/year in the US alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization, and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA microparticles that provides a sustained release of bioactive insulin for >20days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring, healing. Using a heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04mg insulin/cm2, every three days for 9 days, have faster closure, faster rate of disintegration of dead tissue, and decreased oxidative stress.In addition, in insulin-treated wounds the pattern of neutrophil inflammatory response suggests faster clearing of the burn dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibers organized more like a basket weave (normal skin) than aligned and crosslinked (scar tissue). In summary , application of ASD-containing insulin-loaded PLGA particles on burns every three days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging techniques are the standard method for assessment of fracture healing processes. However, these methods are perhaps not entirely reliable for early detection of complications, the most frequent of these being delayed union and non-union. A prompt diagnosis of such disorders could prevent prolonged patient distress and disability. Efforts should be directed towards the development of new technologies for improving accuracy in diagnosing complications following bone fractures. The variation in the levels of bone turnover markers (BTMs) have been assessed with regard to there ability to predict impaired fracture healing at an early stage, nevertheless the conclusions of some studies are not consensual. In this article the authors have revised the potential of BTMs as early predictors of prognosis in adult patients presenting traumatic bone fractures but who did not suffer from osteopenia or postmenopausal osteoporosis. The available information from the different studies performed in this field was systematized in order to highlight the most promising BTMs for the assessment of fracture healing outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maturity models are adopted to minimise our complexity perception over a truly complex phenomenon. In this sense, maturity models are tools that enable the assessment of the most relevant variables that impact on the outputs of a specific system. Ideally a maturity model should provide information concerning the qualitative and quantitative relationships between variables and how they affect the latent variable, that is, the maturity level. Management systems (MSs) are implemented worldwide and by an increasing number of companies. Integrated management systems (IMSs) consider the implementation of one or several MSs usually coexisting with the quality management subsystem (QMS). It is intended in this chapter to report a model based on two components that enables the assessment of the IMS maturity, considering the key process agents (KPAs) identified through a systematic literature review and the results collected from two surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Literatura - Especialidade em Teoria da Literatura

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution mtDNA phylogenetic tree allowed us to look backward in time to investigate purifying selection. Purifying selection was very strong in the last 2,500 years, continuously eliminating pathogenic mutations back until the end of the Younger Dryas (∼11,000 years ago), when a large population expansion likely relaxed selection pressure. This was preceded by a phase of stable selection until another relaxation occurred in the out-of-Africa migration. Demography and selection are closely related: expansions led to relaxation of selection and higher pathogenicity mutations significantly decreased the growth of descendants. The only detectible positive selection was the recurrence of highly pathogenic nonsynonymous mutations (m.3394T>C-m.3397A>G-m.3398T>C) at interior branches of the tree, preventing the formation of a dinucleotide STR (TATATA) in the MT-ND1 gene. At the most recent time scale in 124 mother-children transmissions, purifying selection was detectable through the loss of mtDNA variants with high predicted pathogenicity. A few haplogroup-defining sites were also heteroplasmic, agreeing with a significant propensity in 349 positions in the phylogenetic tree to revert back to the ancestral variant. This nonrandom mutation property explains the observation of heteroplasmic mutations at some haplogroup-defining sites in sequencing datasets, which may not indicate poor quality as has been claimed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation  of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia Clínica / Psicologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa Doutoral em Biologia Molecular e Ambiental

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Ambiental e Molecular

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa.We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis.Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20.Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. We took advantage of a commercially available hydrogel, Carbopol, a vehicle for topical administration that maintains a moist environment within the wound site. We hypothesized that the incorporation of LLKKK18 conjugated to dextrin would improve the healing process in rat burns. Whereas the hydrogel improves healing, LLKKK18 released from the dextrin conjugates further accelerates wound closure, and simultaneously improving the quality of healing. Indeed, the release of LLKKK18 reduces oxidative stress and inflammation (low neutrophil and macrophage infiltration and pro-inflammatory cytokines levels). Importantly, it induced a faster resolution of the inflammatory stage through early M2 macrophage recruitment. In addition, LLKKK18 stimulates angiogenesis (increased VEGF and microvessel development in vivo), potentially contributing to more effective transport of nutrients and cytokines. Moreover, collagen staining evaluated by Masson’s Trichrome was visually much more intense after treatment with LLKKK18, suggesting higher collagen deposition. (...)