3 resultados para Granitic rock mass
em Universidade do Minho
Resumo:
The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating (HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities whi h involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.
Resumo:
Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil