10 resultados para Glycerol oxidehydration

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of citric acid from crude glycerol from biodiesel industry, in batch cultures of Yarrowia lipolytica W29 was performed in a lab-scale stirred tank bioreactor in order to assess the effect of oxygen mass transfer rate in this bioprocess. An empirical correlation was proposed to describe oxygen volumetric mass transfer coefficient (kLa) as a function of operating conditions (stirring speed and specific air flow rate) and cellular density. kLa increased according with a power function with specific power input and superficial gas velocity, and slightly decreased with cellular density. The increase of initial kLa from 7 h-1 to 55 h-1 led to 7.8-fold increase of citric acid final concentration. Experiments were also performed at controlled dissolved oxygen (DO) and citric acid concentration increased with DO up to 60% of saturation. Thus, due to the simpler operation setting an optimal kLa than at controlled DO, it can be concluded that kLa is an adequate parameter for the optimization of citric acid production from crude glycerol by Y. lipolytica and to be considered in bioprocess scale-up. Our empirical correlation, considering the operating conditions and cellular density, will be a valid tool for this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Citric acid, an important and versatile organic acid extensively used in several industries, is originally produced by Aspergillus niger in submerged fermentation from molasses [1]. However, Yarrowia lipolytica have been studied and demonstrate a great potential as citric acid producer from several carbon sources [1–5] including crude glycerol, a low cost byproduct from the biodiesel industry [6]. The simultaneous production of the isomer isocitric acid is the major problem in using this yeast in the citric acid production. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências - Especialidade em Biologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was carried out to evaluate the effect of chitosan-based edible coatings with Aloe vera extract on the postharvest blueberry fruit quality during storage at 5 °C. Firstly, A. vera fractions (pulp and liquid) were extracted from leaves and evaluated in terms of antifungal and antioxidant capacities. The choice of the most adequate chitosan and A. vera fraction concentrations to be incorporated in coating formulation was made based on the wettability of the corresponding coating solutions. Coatings with 0.5% (w/v) chitosan + 0.5% (w/v) glycerol + 0.1% (w/v) Tween 80 + 0.5% (v/v) A. vera liquid fraction presented the best characteristics to uniformly coat blueberry surface. Physico-chemical (i.e., titratable acidity, pH, weight loss) and microbiological analyses of coated blueberries (non-inoculated or artificially inoculated with Botrytis cinerea) were performed during 25 d. Microbiological growth and water loss levels were approximately reduced by 50% and 42%, respectively, in coated blueberries after 25 d compared to uncoated blueberries. After 15 d, weight loss values were 6.2% and 3.7% for uncoated and chitosanA. vera coated blueberries, respectively. Uncoated fruits presented mold contamination after 2 d of storage (2.0 ± 0.32 log CFU g1), whilst fruits with chitosan-based coatings with A. vera presented mold contamination only after 9 d of storage (1.3 ± 0.35 log CFU g1). Overall, coatings developed in this study extend blueberries shelf-life for about 5 d, demonstrating for the first time that the combination of chitosan and A. vera liquid fraction as edible coating materials has great potential in expanding the shelf-life of fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Anaerobic microbial diversity encloses a very high potential that can be used for biotechnological applications. This potential is still largely unexplored, since the majority of the microorganisms in Nature are unknown or poorly characterized. This work is focused on the study of novel anaerobic microorganisms that participate in the metabolism of lipids, long chain fatty acids (LCFA) and glycerol, with the main goal of producing valuable energy-rich organic compounds. For that, conventional anaerobic culturing procedures were combined with continuous bioreactors operation and allied to microbial ecology approaches. Two main examples of the work performed will be presented. (...)