37 resultados para Geospatial Data Model
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.
Resumo:
Publicado em "Information control in manufacturing 1998 : (INCOM'98) : advances in industrial engineering : a proceedings volume from the 9th IFAC Symposium, Nancy-Metz, France, 24-26 June 1998. Vol. 2"
Resumo:
Accessibility is nowadays an important issue for the development of cities. It is seen as a priority in order toguarantee equal access to fundamental rights, to improve the quality of life of citizens and to ensure that everyone, regardless of age, mobility or ability, have equal access to all the resources and benefits cities have to offer. Consequently, factors closely related to the accessibility have gained a higher relevance for identifying and assessing the location of urban facilities. The main goal of the paper is to present an accessibility evaluation model applied in Santarém, in Brazil, a city located midway between the larger cities of Belem and Manaus. The research instruments, sampling method and data analysis proposed for mapping urban accessibility are described. Daily activities were used to identify and group key destinations. The model was implemented within a geographic information system and integrates the individualâ s perspective through the definition of each key destination weight, reflecting their significance for daily activities in the urban area. Accessibility to key destinations was mapped over 24 districts of the city of Santarém. The results of this model application can support city administration decision-making for new investments in order to improve urban quality of life.
Resumo:
This paper presents a simulation model, which was incorporated into a Geographic Information System (GIS), in order to calculate the maximum intensity of urban heat islands based on urban geometry data. The method-ology of this study stands on a theoretical-numerical basis (Okeâ s model), followed by the study and selection of existing GIS tools, the design of the calculation model, the incorporation of the resulting algorithm into the GIS platform and the application of the tool, developed as exemplification. The developed tool will help researchers to simulate UHI in different urban scenarios.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.
Resumo:
BACKGROUND: Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. OBJECTIVE: The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. METHODS: The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies’ safety conditions were also analyzed. RESULTS: Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies’ safety conditions; the organizational scale is the one that best reflects the actual safety conditions. CONCLUSIONS: The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups’ safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
This paper presents a proposal for a management model based on reliability requirements concerning Cloud Computing (CC). The proposal was based on a literature review focused on the problems, challenges and underway studies related to the safety and reliability of Information Systems (IS) in this technological environment. This literature review examined the existing obstacles and challenges from the point of view of respected authors on the subject. The main issues are addressed and structured as a model, called "Trust Model for Cloud Computing environment". This is a proactive proposal that purposes to organize and discuss management solutions for the CC environment, aiming improved reliability of the IS applications operation, for both providers and their customers. On the other hand and central to trust, one of the CC challenges is the development of models for mutual audit management agreements, so that a formal relationship can be established involving the relevant legal responsibilities. To establish and control the appropriate contractual requirements, it is necessary to adopt technologies that can collect the data needed to inform risk decisions, such as access usage, security controls, location and other references related to the use of the service. In this process, the cloud service providers and consumers themselves must have metrics and controls to support cloud-use management in compliance with the SLAs agreed between the parties. The organization of these studies and its dissemination in the market as a conceptual model that is able to establish parameters to regulate a reliable relation between provider and user of IT services in CC environment is an interesting instrument to guide providers, developers and users in order to provide services and secure and reliable applications.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−1 of proton--proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model.