10 resultados para Geometry of numbers
em Universidade do Minho
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
The authors thank the federal agency CAPES and the Foundation for Research Support of the state of Sao Paulo, Brazil (FAPESP) for providing a PhD scholarship, and the University of Minho, in Portugal, for the international collaboration.
Resumo:
Tese de Doutoramento em Ciências da Educação - Especialidade em Filosofia da Educação
Resumo:
Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil (área de especialização em Estruturas e Geotecnia)
Resumo:
Dissertação de mestrado em Ciências da Educação (área de especialização em Tecnologia Educativa)