5 resultados para Forager bees
em Universidade do Minho
Resumo:
The archaeogenetics of Europe remains deeply controversial. Advances in ancient deoxyribonucleic acid (DNA) analysis have suggested gene flow between Neanderthals and modern humans, who arrived in Europe <50 000 years ago, but have so far failed to support evolution of Neanderthals from a population of Homo heidelbergensis represented by remains in northern Spain. The extent to which European Mesolithic forager populations versus Neolithic pioneers from the Near East contributed to the extant gene pool of Europeans also continues to be contested. Whilst analyses of extant mitochondrial lineages have emphasised late Palaeolithic and Mesolithic expansions, ancient DNA (aDNA) results suggest significant Neolithic dispersals from the southern ‘refugial’ zone into the northern ‘bio-tidal’ zone. However, whether these had a primarily Near Eastern or North Mediterranean source remains a matter for debate. Meanwhile, aDNA has also begun to highlight an important role for later dispersals, especially during the late Neolithic, in shaping the European gene pool.
Resumo:
Silk fibroin is a commonly available natural biopolymer produced in specialized glands of arthropods, such as silkworms or spiders, scorpions, mites, bees and flies. This biopolymer has a long history of use in textile production and also as sutures or treatment of skin wounds. Silk fibroin has been increasingly explored in other areas of biomedical science where we can find a higher morphological diversification of silk biomaterials like films, electrospun fibers, 3D porous scaffolds or nanoparticles. In recent years it has been demonstrated that fibroin is an excellent material for active components in optical devices. This new application opens the way towards the development of multifunctional optoelectronic devices, which in perspective can be made fully biocompatible and eventually bioresorbable. Moreover, fibroin can be added to other biocomponents in order to modify the biomaterial properties leading to optimized and total different functions. These improvements can go from higher cell adhesion in tissue engineering or enhanced optical transparency, smoothness or flexibility in optoelectronic devices. The tuning and completely understanding of silk fibers physicochemical properties and interaction with other elements are of crucial importance for the improvement of already existent silk-based materials and the basis for the development of new products.
Resumo:
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Dissertação de mestrado em Genética Molecular